Do you want to publish a course? Click here

Probing string-inspired gravity with the inspiral-merger-ringdown consistency tests of gravitational waves

121   0   0.0 ( 0 )
 Added by Zack Carson
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The extreme-gravity collisions between black holes allow us to probe the underlying theory of gravity. We apply the theory-agnostic inspiral-merger-ringdown consistency test to an example theory beyond general relativity for the first time. Here we focus on the string-inspired Einstein-dilaton Gauss-Bonnet gravity and modify the inspiral, ringdown, and remnant black hole properties of the gravitational waveform. We found that future multiband observations allow us to constrain the theory stronger than current observations by an order of magnitude. The formalism developed here can easily be applied to other theories.



rate research

Read More

127 - Zack Carson , Kent Yagi 2020
Gravitational waves from extreme gravity events such as the coalescence of two black holes in a binary system fill our observable universe, bearing with them the underlying theory of gravity driving their process. One compelling alternative theory of gravity -- known as Einstein-dilaton Gauss-Bonnet gravity motivated by string theory -- describes the presence of an additional dilaton scalar field coupled directly to higher orders of the curvature, effectively describing a fifth force interaction and the emission of scalar dipole radiation between two scalarized black holes. Most previous studies focused on considering only the leading correction to the inspiral portion of the binary black hole waveforms. In our recent paper, we carried out inspiral-merger-ringdown consistency tests in this string-inspired gravity by including corrections to both the inspiral and ringdown portions, as well as those to the mass and spin of remnant black holes, valid to quadratic order in spin. We here extend the analysis by directly computing bounds on the theoretical coupling constant using the full inspiral-merger-ringdown waveform rather than treating the inspiral and merger-ringdown portions separately. We also consider the corrections valid to quartic order in spin to justify the validity of black holes slow-rotation approximation. We find the quasinormal mode corrections to the waveform to be particularly important for high-mass events such as GW170729, in which the dilaton fields small-coupling approximation fails without such effects included. We also show that future space-based and multiband gravitational-wave observations have the potential to go beyond existing bounds on the theory. The bounds presented here are comparable to those found in via the inspiral-merger-ringdown consistency tests.
124 - Zack Carson , Kent Yagi 2020
Gravitational waves from the explosive merger of distant black holes are encoded with details regarding the complex extreme-gravity spacetime present at their source. Famously described by the Kerr spacetime metric for rotating black holes in general relativity, what if effects beyond this theory are present? One way to efficiently test this hypothesis is to first obtain a metric which parametrically deviates from the Kerr metric in a model-independent way. Given such a metric, one can then predict the ensuing corrections to both the inspiral and ringdown portions of the gravitational waveform for black holes present in the new spacetime. With these tools in hand, one can then test gravitational wave signals for such effects by two different methods, (i) inspiral-merger-ringdown consistency test, and (ii) parameterized test. In this paper, we demonstrate the exact recipe one needs to do just this. We first derive parameterized corrections to the waveform inspiral, ringdown, and remnant properties for a generic non-Kerr spacetime and apply this to two example beyond-Kerr spacetimes each parameterized by a single non-Kerr parameter. We then predict the beyond-Kerr parameter magnitudes required in an observed gravitational wave signal to be statistically inconsistent with the Kerr case in general relativity. We find that the two methods give very similar bounds. The constraints found with existing gravitational-wave events are comparable to those from x-ray observations, while future gravitational-wave observations using Cosmic Explorer (Laser Interferometer Space Antenna) can improve such bounds by two (three) orders of magnitude.
We present the first modeled search for gravitational waves using the complete binary black hole gravitational waveform from inspiral through the merger and ringdown for binaries with negligible component spin. We searched approximately 2 years of LIGO data taken between November 2005 and September 2007 for systems with component masses of 1-99 solar masses and total masses of 25-100 solar masses. We did not detect any plausible gravitational-wave signals but we do place upper limits on the merger rate of binary black holes as a function of the component masses in this range. We constrain the rate of mergers for binary black hole systems with component masses between 19 and 28 solar masses and negligible spin to be no more than 2.0 per Mpc^3 per Myr at 90% confidence.
We report a search for gravitational waves from the inspiral, merger and ringdown of binary black holes (BBH) with total mass between 25 and 100 solar masses, in data taken at the LIGO and Virgo observatories between July 7, 2009 and October 20, 2010. The maximum sensitive distance of the detectors over this period for a (20,20) Msun coalescence was 300 Mpc. No gravitational wave signals were found. We thus report upper limits on the astrophysical coalescence rates of BBH as a function of the component masses for non-spinning components, and also evaluate the dependence of the search sensitivity on component spins aligned with the orbital angular momentum. We find an upper limit at 90% confidence on the coalescence rate of BBH with non-spinning components of mass between 19 and 28 Msun of 3.3 times 10^-7 mergers /Mpc^3 /yr.
We investigate the capability of LISA to measure the sky position of equal-mass, nonspinning black hole binaries, combining for the first time the entire inspiral-merger-ringdown signal, the effect of the LISA orbits, and the complete three-channel LISA response. We consider an ensemble of systems near the peak of LISAs sensitivity band, with total rest mass of 2times10^6 Modot, a redshift of z = 1, and randomly chosen orientations and sky positions. We find median sky localization errors of approximately sim3 arcminutes. This is comparable to the field of view of powerful electromagnetic telescopes, such as the James Webb Space Telescope, that could be used to search for electromagnetic signals associated with merging massive black holes. We investigate the way in which parameter errors decrease with measurement time, focusing specifically on the additional information provided during the merger-ringdown segment of the signal. We find that this information improves all parameter estimates directly, rather than through diminishing correlations with any subset of well- determined parameters. Although we have employed the baseline LISA design for this study, many of our conclusions regarding the information provided by mergers will be applicable to alternative mission designs as well.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا