Do you want to publish a course? Click here

Holistic Specifications for Robust Programs

97   0   0.0 ( 0 )
 Added by Sophia Drossopoulou
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Functional specifications describe what program components do: the sufficient conditions to invoke a components operations. They allow us to reason about the use of components in the closed world setting, where the component interacts with known client code, and where the client code must establish the appropriate pre-conditions before calling into the component. Sufficient conditions are not enough to reason about the use of components in the open world setting, where the component interacts with external code, possibly of unknown provenance, and where the component itself may evolve over time. In this open world setting, we must also consider the necessary} conditions, i.e, what are the conditions without which an effect will not happen. In this paper we propose the language Chainmail for writing holistic specifications that focus on necessary conditions (as well as sufficient conditions). We give a formal semantics for Chainmail. The core of Chainmail has been mechanised in the Coq proof assistant.



rate research

Read More

In program synthesis there is a well-known trade-off between concise and strong specifications: if a specification is too verbose, it might be harder to write than the program; if it is too weak, the synthesised program might not match the users intent. In this work we explore the use of annotations for restricting memory access permissions in program synthesis, and show that they can make specifications much stronger while remaining surprisingly concise. Specifically, we enhance Synthetic Separation Logic (SSL), a framework for synthesis of heap-manipulating programs, with the logical mechanism of read-only borrows. We observe that this minimalistic and conservative SSL extension benefits the synthesis in several ways, making it more (a) expressive (stronger correctness guarantees are achieved with a modest annotation overhead), (b) effective (it produces more concise and easier-to-read programs), (c) efficient (faster synthesis), and (d) robust (synthesis efficiency is less affected by the choice of the search heuristic). We explain the intuition and provide formal treatment for read-only borrows. We substantiate the claims (a)--(d) by describing our quantitative evaluation of the borrowing-aware synthesis implementation on a series of standard benchmark specifications for various heap-manipulating programs.
Program transformation is an appealing technique which allows to improve run-time efficiency, space-consumption, and more generally to optimize a given program. Essentially, it consists of a sequence of syntactic program manipulations which preserves some kind of semantic equivalence. Unfolding is one of the basic operations which is used by most program transformation systems and which consists in the replacement of a procedure call by its definition. While there is a large body of literature on transformation and unfolding of sequential programs, very few papers have addressed this issue for concurrent languages. This paper defines an unfolding system for CHR programs. We define an unfolding rule, show its correctness and discuss some conditions which can be used to delete an unfolded rule while preserving the program meaning. We also prove that, under some suitable conditions, confluence and termination are preserved by the above transformation. To appear in Theory and Practice of Logic Programming (TPLP)
The Message Passing Interface (MPI) framework is widely used in implementing imperative pro- grams that exhibit a high degree of parallelism. The PARTYPES approach proposes a behavioural type discipline for MPI-like programs in which a type describes the communication protocol followed by the entire program. Well-typed programs are guaranteed to be exempt from deadlocks. In this paper we describe a type inference algorithm for a subset of the original system; the algorithm allows to statically extract a type for an MPI program from its source code.
In this paper we investigate the applicability of standard model checking approaches to verifying properties in probabilistic programming. As the operational model for a standard probabilistic program is a potentially infinite parametric Markov decision process, no direct adaption of existing techniques is possible. Therefore, we propose an on-the-fly approach where the operational model is successively created and verified via a step-wise execution of the program. This approach enables to take key features of many probabilistic programs into account: nondeterminism and conditioning. We discuss the restrictions and demonstrate the scalability on several benchmarks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا