Do you want to publish a course? Click here

Coherent Band-Edge Oscillations and Dynamic LO Phonon Mode Splitting as Evidence for Polaronic Coupling in Perovskites

69   0   0.0 ( 0 )
 Added by Jigang Wang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The coherence of collective modes, such as phonons, and their modulation of the electronic states are long sought in complex systems, which is a cross-cutting issue in photovoltaics and quantum electronics. In photovoltaic cells and lasers based on metal halide perovskites, the presence of polaronic coupling, i.e., photocarriers dressed by the macroscopic motion of charged lattice, assisted by terahertz (THz) longitudinal optical (LO) phonons, has been intensely studied yet still debated. This may be key for explaining the remarkable properties of the perovskite materials, e.g., defect tolerance, long charge lifetimes and diffusion length. Here we use the intense single-cycle THz pulse with the peak electric field up to $E_{THz}=$1000,kV/cm to drive coherent band-edge oscillations at room temperature in CH$_3$NH$_3$PbI$_3$. We reveal the oscillatory behavior dominantly to a specific quantized lattice vibration mode at $omega_{mathrm{LO}}sim$4 THz, being both dipole and momentum forbidden. THz-driven coherent dynamics exhibits distinguishing features: the room temperature coherent oscillations at $omega_{mathrm{LO}}$ longer than 1 ps in both single crystals and thin films; the {em mode-selective} modulation of different band edge states assisted by electron-phonon ($e$-$ph$) interaction; {em dynamic mode splitting} controlled by temperature due to entropy and anharmonicity of organic cations. Our results demonstrate intense THz-driven coherent band-edge modulation as a powerful probe of electron-lattice coupling phenomena and provide compelling implications for polaron correlations in perovskites.



rate research

Read More

Excitation localization involving dynamic nanoscale distortions is a central aspect of photocatalysis, quantum materials and molecular optoelectronics. Experimental characterization of such distortions requires techniques sensitive to the formation of point-defect-like local structural rearrangements in real time. Here, we visualize excitation-induced strain fields in a prototypical member of the lead halide perovskites via femtosecond resolution diffuse x-ray scattering measurements. This enables momentum-resolved phonon spectroscopy of the locally-distorted structure and reveals radially-expanding nanometer-scale elastic strain fields associated with the formation and relaxation of polarons in photoexcited perovskites. Quantitative estimates of the magnitude and the shape of this polaronic distortion are obtained, providing direct insights into the debated dynamic structural distortions in these materials. Optical pump-probe reflection spectroscopy corroborates these results and shows how these large polaronic distortions transiently modify the carrier effective mass, providing a unified picture of the coupled structural and electronic dynamics that underlie the unique optoelectronic functionality of the hybrid perovskites.
We investigate the temporal evolution of the electronic states at the bismuth (111) surface by means of time and angle resolved photoelectron spectroscopy. The binding energy of bulk-like bands oscillates with the frequency of the $A_{1g}$ phonon mode whereas surface states are insensitive to the coherent displacement of the lattice. A strong dependence of the oscillation amplitude on the electronic wavevector is correctly reproduced by textit{ab initio} calculations of electron-phonon coupling. Besides these oscillations, all the electronic states also display a photoinduced shift towards higher binding energy whose dynamics follows the evolution of the electronic temperature.
Hybrid perovskites are a rapidly growing research area, having reached photovoltaic power conversion efficiencies of over 25 %. We apply a symmetry-motivated analysis method to analyse X-ray pair distribution function data of the cubic phases of the hybrid perovskites MAPb$X_3$ ($X$ = I, Br, Cl). We demonstrate that the local structure of the inorganic components of MAPb$X_3$ ($X$ = I, Br, Cl) are dominated by scissoring type deformations of the Pb$X_6$ octahedra. We find these modes to have a larger amplitude than equivalent distortions in the $A$-site deficient perovskite ScF$_3$ and demonstrate that they show a significant departure from the harmonic approximation. Calculations performed on an all-inorganic analogue to the hybrid perovskite, FrPbBr$_3$, show that the large amplitudes of the scissoring modes are coupled to an opening of the electronic band gap. Finally, we use density functional theory calculations to show that the organic MA cations reorientate to accomodate the large amplitude scissoring modes.
Metal halide perovskites exhibit a materials physics that is distinct from traditional inorganic and organic semiconductors. While materials such as CH3NH3PbI3 are non-magnetic, the presence of heavy elements (Pb and I) in a non-centrosymmetric crystal environment result in a significant spin-splitting of the frontier electronic bands through the Rashba-Dresselhaus effect. We show, from a combination of textit{ab initio} molecular dynamics, density-functional theory, and relativistic quasi-particle textit{GW} theory, that the nature (magnitude and orientation) of the band splitting depends on the local asymmetry around the Pb and I sites in the perovskite structure. The potential fluctuations vary in time as a result of thermal disorder and a dynamic lone pair instability of the Pb(II) 6s$^{2}$6p$^{0}$ ion. We show that the same physics emerges both for the organic-inorganic CH3NH3PbI3 and the inorganic CsPbI3 compound. The results are relevant to the photophysics of these compounds and are expected to be general to other lead iodide containing perovskites.
Hybrid organic-inorganic semiconductors feature complex lattice dynamics due to the ionic character of the crystal and the softness arising from non-covalent bonds between molecular moieties and the inorganic network. Here we establish that such dynamic structural complexity in a prototypical two-dimensional lead iodide perovskite gives rise to the coexistence of diverse excitonic resonances, each with a distinct degree of polaronic character. By means of high-resolution resonant impulsive stimulated Raman spectroscopy, we identify vibrational wavepacket dynamics that evolve along different configurational coordinates for distinct excitons and photocarriers. Employing density functional theory calculations, we assign the observed coherent vibrational modes to various low-frequency ($lesssim 50$,cm$^{-1}$) optical phonons involving motion in the lead-iodide layers. We thus conclude that different excitons induce specific lattice reorganizations, which are signatures of polaronic binding. This insight on the energetic/configurational landscape involving globally neutral primary photoexcitations may be relevant to a broader class of emerging hybrid semiconductor materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا