Thanks to the remarkable developments of ultrafast science, one of todays challenges is to modify material state by controlling with a light pulse the coherent motions that connect two different phases. Here we show how strain waves, launched by electronic and structural precursor phenomena, determine a macroscopic transformation pathway for the semiconducting-to-metal transition with large volume change in bistable Ti$_3$O$_5$ nanocrystals. Femtosecond powder X-ray diffraction allowed us to quantify the structural deformations associated with the photoinduced phase transition on relevant time scales. We monitored the early intra-cell distortions around absorbing metal dimers, but also long range crystalline deformations dynamically governed by acoustic waves launched at the laser-exposed Ti$_3$O$_5$ surface. We rationalize these observations with a simplified elastic model, demonstrating that a macroscopic transformation occurs concomitantly with the propagating acoustic wavefront on the picosecond timescale, several decades earlier than the subsequent thermal processes governed by heat diffusion.