Lattice dynamics and spin-phonon interaction in strained NiO films


Abstract in English

NiO thin films with various strains were grown on SrTiO3 (STO) and MgO substrates using a pulsed laser deposition technique. The films were characterized using an x-ray diffractometer, atomic force microscopy, and infrared reflectance spectroscopy. The films grown on STO (001) substrate show a compressive in-plane strain which increases as the film thickness is reduced, resulting in an increase of the NiO phonon frequency. On the other hand, a tensile strain was detected in the NiO film grown on MgO (001) substrate which induces a softening of the phonon frequency. Overall, the variation of in-plane strain from -0.36% to +0.48% yields the decrease of the phonon frequency from 409.6 cm-1 to 377.5 cm-1 which occurs due to the ~1% change of the inter-atomic distances. The magnetic exchange -driven phonon splitting Delta(W) in three different sample, with relaxed (i.e. zero) strain, 0.36% compressive and 0.48% tensile strain was measured as a function of temperature. The Delta(W) increases on cooling in NiO relaxed film as in the previously published work on a bulk crystal. The splitting increases on cooling also in 0.48% tensile strained film, but Delta(W) is systematically 3-4 cm-1 smaller than in relaxed film. Since the phonon splitting is proportional to the non-dominant magnetic exchange interaction J1, the reduction of phonon splitting in tensile-strained film was explained by a diminishing J1 with lattice expansion. Increase of Delta(W) on cooling can be also explained by rising of J1 with reduced temperature.

Download