No Arabic abstract
Electron spin resonance (ESR) spectroscopy has broad applications in physics, chemistry and biology. As a complementary tool, zero-field ESR (ZF-ESR) spectroscopy has been proposed for decades and shown its own benefits for investigating the electron fine and hyperfine interaction. However, the ZF-ESR method has been rarely used due to the low sensitivity and the requirement of much larger samples than conventional ESR. In this work, we present a method for deploying ZF-ESR spectroscopy at the nanoscale by using a highly sensitive quantum sensor, the nitrogen-vacancy center in diamond. We also measure the nanoscale ZF-ESR spectrum of a few P1 centers in diamond, and show that the hyperfine coupling constant can be directly extracted from the spectrum. This method opens the door to practical applications of ZF-ESR spectroscopy, such as investigation of the structure and polarity information in spin-modified organic and biological systems.
Electron paramagnetic resonance spectroscopy (EPR) is among the most important analytical tools in physics, chemistry, and biology. The emergence of nitrogen-vacancy (NV) centers in diamond, serving as an atomic-sized magnetometer, has promoted this technique to single-spin level, even under ambient conditions. Despite the enormous progress in spatial resolution, the current megahertz spectral resolution is still insufficient to resolve key heterogeneous molecular information. A major challenge is the short coherence times of the sample electron spins. Here, we address this challenge by employing a magnetic noise-insensitive transition between states of different symmetry. We demonstrate a 27-fold narrower spectrum of single substitutional nitrogen (P1) centers in diamond with linewidth of several kilohertz, and then some weak couplings can be resolved. Those results show both spatial and spectral advances of NV center-based EPR, and provide a route towards analytical (EPR) spectroscopy at single-molecule level.
We report electron spin resonance measurements of donors in silicon at millikelvin temperatures using a superconducting $LC$ planar micro-resonator and a Josephson Parametric Amplifier. The resonator includes a nanowire inductor, defining a femtoliter detection volume. Due to strain in the substrate, the donor resonance lines are heavily broadened. Single-spin to photon coupling strengths up to $sim 3~text{kHz}$ are observed. The single shot sensitivity is $120 pm 24~$spins/Hahn echo, corresponding to $approx 12 pm 3$~spins$/sqrt{text{Hz}}$ for repeated acquisition.
We report the nanoscale spin detection and electron paramagnetic resonance (EPR) spectrum of copper (Cu$^{2+}$) ions via double electron-electron resonance with single spins in diamond at room temperature and low magnetic fields. We measure unexpectedly narrow EPR resonances with linewidths $sim 2-3$ MHz from copper-chloride molecules dissolved in poly-lysine. We also observe coherent Rabi oscillations and hyperfine splitting from single Cu$^{2+}$ ions, which could be used for dynamic nuclear spin polarization and higher sensitivity of spin detection. We interpret and analyze these observations using both spin hamiltonian modeling of the copper-chloride molecules and numerical simulations of the predicted DEER response, and obtain a sensing volume $sim (250 text{nm})^3$. This work will open the door for copper-labeled EPR measurements under ambient conditions in bio-molecules and nano-materials.
Two-dimensional Nuclear Magnetic Resonance (NMR) is essential in molecular structure determination. The Nitrogen-Vacancy (NV) center in diamond has been proposed and developed as an outstanding quantum sensor to realize NMR in nanoscale. In this work, we develop a scheme for two-dimensional nanoscale NMR spectroscopy based on quantum controls on an NV center. We carry out a proof of principle experiment on a target of two coupled $^{13}$C nuclear spins in diamond. A COSY-like sequences is used to acquire the data on time domain, which is then converted to frequency domain with the fast Fourier transform (FFT). With the two-dimensional NMR spectrum, the structure and location of the set of nuclear spin are resolved. This work marks a fundamental step towards resolving the structure of a single molecule.
We demonstrate a wide-band all-optical method of nanoscale magnetic resonance (MR) spectroscopy under ambient conditions. Our method relies on cross-relaxation between a probe spin, the electronic spin of a nitrogen-vacancy centre in diamond, and target spins as the two systems are tuned into resonance. By optically monitoring the spin relaxation time ($T_1$) of the probe spin while varying the amplitude of an applied static magnetic field, a frequency spectrum of the target spin resonances, a $T_1$-MR spectrum, is obtained. As a proof of concept, we measure $T_1$-MR spectra of a small ensemble of $^{14}$N impurities surrounding the probe spin within the diamond, with each impurity comprising an electron spin 1/2 and a nuclear spin 1. The intrinsically large bandwidth of the technique and probe properties allows us to detect both electron spin transitions -- in the GHz range -- and nuclear spin transitions -- in the MHz range -- of the $^{14}$N spin targets. The measured frequencies are found to be in excellent agreement with theoretical expectations, and allow us to infer the hyperfine, quadrupole and gyromagnetic constants of the target spins. Analysis of the strength of the resonances obtained in the $T_1$-MR spectrum reveals that the electron spin transitions are probed via dipole interactions, while the nuclear spin resonances are dramatically enhanced by hyperfine coupling and an electron-mediated process. Finally, we investigate theoretically the possibility of performing $T_1$-MR spectroscopy on nuclear spins without hyperfine interaction and predict single-proton sensitivity using current technology. This work establishes $T_1$-MR as a simple yet powerful technique for nanoscale MR spectroscopy, with broadband capability and a projected sensitivity down to the single nuclear spin level.