Photon Self-energy in Magnetized Chiral Plasma from Kinetic Theory


Abstract in English

We study the photon self-energy in magnetized chiral plasma by solving the response of electromagnetic field perturbations in chiral kinetic theory with Landau level states. With lowest Landau level approximation and in collisionless limit, we find solutions for three particular perturbations: parallel electric field, static perpendicular electric and magnetic field, corresponding to chiral magnetic wave, drift state and tilted state, from which we extract components of photon self-energy in different kinematics. We show no solution is possible for more general field perturbations. We argue this is an artifact of the collisionless limit: while static solution corresponding to drift state and tilted state can be found, they cannot be realized dynamically without interaction between Landau levels. We also discuss possible manifestation of side-jump effect due to both boost and rotation, with the latter due to the presence of background magnetic field.

Download