No Arabic abstract
The method of increments and frozen natural orbital (MI-FNO) framework is introduced to help expedite the application of noisy, intermediate-scale quantum~(NISQ) devices for quantum chemistry simulations. The MI-FNO framework provides a systematic reduction of the occupied and virtual orbital spaces for quantum chemistry simulations. The correlation energies of the resulting increments from the MI-FNO reduction can then be solved by various algorithms, including quantum algorithms such as the phase estimation algorithm and the variational quantum eigensolver (VQE). The unitary coupled-cluster singles and doubles VQE framework is used to obtain correlation energies for the case of small molecules (i.e., BeH$_2$, CH$_4$, NH$_3$, H$_2$O, and HF) using the cc-pVDZ basis set. The quantum resource requirements are estimated for a constrained geometry complex (CGC) catalyst that is utilized in industrial settings for the polymerization of $alpha$-olefins. We show that the MI-FNO approach provides a significant reduction in the qubit requirements relative to the full system simulations. We propose that the MI-FNO framework can create scalable examples of quantum chemistry problems that are appropriate for assessing the progress of NISQ devices.
Motivated by the recently proposed parallel orbital-updating approach in real space method, we propose a parallel orbital-updating based plane-wave basis method for electronic structure calculations, for solving the corresponding eigenvalue problems. In addition, we propose two new modified parallel orbital-updating methods. Compared to the traditional plane-wave methods, our methods allow for two-level parallelization, which is particularly interesting for large scale parallelization. Numerical experiments show that these new methods are more reliable and efficient for large scale calculations on modern supercomputers
Quantum simulation of chemistry and materials is predicted to be an important application for both near-term and fault-tolerant quantum devices. However, at present, developing and studying algorithms for these problems can be difficult due to the prohibitive amount of domain knowledge required in both the area of chemistry and quantum algorithms. To help bridge this gap and open the field to more researchers, we have developed the OpenFermion software package (www.openfermion.org). OpenFermion is an open-source software library written largely in Python under an Apache 2.0 license, aimed at enabling the simulation of fermionic models and quantum chemistry problems on quantum hardware. Beginning with an interface to common electronic structure packages, it simplifies the translation between a molecular specification and a quantum circuit for solving or studying the electronic structure problem on a quantum computer, minimizing the amount of domain expertise required to enter the field. The package is designed to be extensible and robust, maintaining high software standards in documentation and testing. This release paper outlines the key motivations behind design choices in OpenFermion and discusses some basic OpenFermion functionality which we believe will aid the community in the development of better quantum algorithms and tools for this exciting area of research.
A major milestone of quantum error correction is to achieve the fault-tolerance threshold beyond which quantum computers can be made arbitrarily accurate. This requires extraordinary resources and engineering efforts. We show that even without achieving full fault tolerance, quantum error detection is already useful on the current generation of quantum hardware. We demonstrate this experimentally by executing an end-to-end chemical calculation for the hydrogen molecule encoded in the [[4, 2, 2]] quantum error-detecting code. The encoded calculation with logical qubits significantly improves the accuracy of the molecular ground-state energy.
We propose an adaptive planewave method for eigenvalue problems in electronic structure calculations. The method combines a priori convergence rates and accurate a posteriori error estimates into an effective way of updating the energy cut-off for planewave discretizations, for both linear and nonlinear eigenvalue problems. The method is error controllable for linear eigenvalue problems in the sense that for a given required accuracy, an energy cut-off for which the solution matches the target accuracy can be reached efficiently. Further, the method is particularly promising for nonlinear eigenvalue problems in electronic structure calculations as it shall reduce the cost of early iterations in self-consistent algorithms. We present some numerical experiments for both linear and nonlinear eigenvalue problems. In particular, we provide electronic structure calculations for some insulator and metallic systems simulated with Kohn--Sham density functional theory (DFT) and the projector augmented wave (PAW) method, illustrating the efficiency and potential of the algorithm.
We introduce a novel energy functional for ground-state electronic-structure calculations. Its fundamental variables are the natural spin-orbitals of the implied singlet many-body wave function and their joint occupation probabilities. The functional derives from a sequence of controlled approximations to the two-particle density matrix. Algebraic scaling of computational cost with electron number is obtainable in general, and Hartree-Fock scaling in the seniority-zero version of the theory. Results obtained with the latter version for saturated small molecular systems are compared with those of highly-accurate quantum-chemical computations. The numerical results are variational, capturing most of the correlation energy from equilibrium to dissociation. Their accuracy is considerably greater than that obtainable with current density-functional theory approximations and with current functionals of the one-particle density matrix only.