No Arabic abstract
We survey the underlying theory behind the large-scale and linear scaling DFT code, Conquest, which shows excellent parallel scaling and can be applied to thousands of atoms with exact solutions, and millions of atoms with linear scaling. We give details of the representation of the density matrix and the approach to finding the electronic ground state, and discuss the implementation of molecular dynamics with linear scaling. We give an overview of the performance of the code, focussing in particular on the parallel scaling, and provide examples of recent developments and applications.
We describe extensions to the siesta density functional theory (dft) code [30], for the simulation of isolated molecules and their absorption spectra. The extensions allow for: - Use of a multi-grid solver for the Poisson equation on a finite dft mesh. Non-periodic, Dirichlet boundary conditions are computed by expansion of the electric multipoles over spherical harmonics. - Truncation of a molecular system by the method of design atom pseudo- potentials of Xiao and Zhang[32]. - Electrostatic potential fitting to determine effective atomic charges. - Derivation of electronic absorption transition energies and oscillator stren- gths from the raw spectra produced by a recently described, order O(N3), time-dependent dft code[21]. The code is furthermore integrated within siesta as a post-processing option.
We introduce numerical optimization of multi-site support functions in the linear-scaling DFT code CONQUEST. Multi-site support functions, which are linear combinations of pseudo-atomic orbitals on a target atom and those neighbours within a cutoff, have been recently proposed to reduce the number of support functions to the minimal basis while keeping the accuracy of a large basis [J. Chem. Theory Comput., 2014, 10, 4813]. The coefficients were determined by using the local filter diagonalization (LFD) method [Phys. Rev. B, 2009, 80, 205104]. We analyse the effect of numerical optimization of the coefficients produced by the LFD method. Tests on crystalline silicon, a benzene molecule and hydrated DNA systems show that the optimization improves the accuracy of the multi-site support functions with small cutoffs. It is also confirmed that the optimization guarantees the variational energy minimizations with multi-site support functions.
We present an approach to the DFT+U method (Density Functional Theory + Hubbard model) within which the computational effort for calculation of ground state energies and forces scales linearly with system size. We employ a formulation of the Hubbard model using nonorthogonal projector functions to define the localized subspaces, and apply it to a local-orbital DFT method including in situ orbital optimization. The resulting approach thus combines linear-scaling and systematic variational convergence. We demonstrate the scaling of the method by applying it to nickel oxide nano-clusters with sizes exceeding 7,000 atoms.
Given the widespread use of density functional theory (DFT), there is an increasing need for the ability to model large systems (beyond 1,000 atoms). We present a brief overview of the large-scale DFT code Conquest, which is capable of modelling such large systems, and discuss approaches to the generation of consistent, well-converged pseudo-atomic basis sets which will allow such large scale calculations. We present tests of these basis sets for a variety of materials, comparing to fully converged plane wave results using the same pseudopotentials and grids.
We present an overview of the variational and diffusion quantum Monte Carlo methods as implemented in the CASINO program. We particularly focus on developments made in the last decade, describing state-of-the-art quantum Monte Carlo algorithms and software and discussing their strengths and their weaknesses. We review a range of recent applications of CASINO.