No Arabic abstract
Instability mechanism based on Coriolis force, on a rapidly rotating portable device handling shear thinning fluids such as blood, is of utmost importance for eventual detection of diseases by mixing with the suitable reagents. Motivated by this proposition, the present study renders a modal stability analysis of shear thinning fluids in a rotating microchannel modelled by the Carreau rheological law. When a microchannel is engraved a rotating compact disc (CD) based device, the centrifugal force acts as the driving force that actuates the flow and the Coriolis force enhances the mixing process in significantly short span by destabilizing the flow. An OrrSommerfeld-Squire analysis is performed to explore the role of these forces on the linear stability of rotating shear-thinning flow. Reported results on shear thinning flow with streamwise disturbances indicate that the critical Reynolds number for the flow transition with viscosity perturbation is nearly half of that of the critical value for the same without viscosity perturbation. In sharp contrast, the present analysis considering spanwise disturbances reveals that the critical Reynolds numbers with and without viscosity perturbation remain virtually unaltered under rotational effects. However, the viscosity variation has no significant influence on the Coriolis force-based instability. Numerical results confirm that a momentous destabilization is possible by aid of the Coriolis force via generating secondary flow inside the channel. Interestingly, the roll cells corresponding to the instabilities at lower time constants exhibit the existence of two distinct vortices, and the centre of the stronger one is essentially settled towards the unstable stratified region. Moreover, for a higher value of the time constant, only one vortex occupies the entire channel.
In a shear flow particles migrate to their equilibrium positions in the microchannel. Here we demonstrate theoretically that if particles are inertial, this equilibrium can become unstable due to the Saffman lift force. We derive an expression for the critical Stokes number that determines the onset of instable equilibrium. We also present results of lattice Boltzmann simulations for spherical particles and prolate spheroids to validate the analysis. Our work provides a simple explanation of several unusual phenomena observed in earlier experiments and computer simulations, but never interpreted before in terms of the unstable equilibrium.
We present an experimental investigation of a novel low Reynolds number shear flow instability triggered by a chemical reaction. An acid-base reaction taking place at the interface between a Newtonian fluid and Carbopol-940 solution leads to a strong viscosity stratification, which locally destabilizes the flow. Our experimental observations are made in the context of a miscible displacement flow, for which the flow instability promotes local mixing and subsequently improves the displacement efficiency. The experimental study is complemented by a simplified normal mode analysis to shed light on the origin of the instability
Using a micro particle imaging velocity technique, we resolve for the first time the three dimensionnal structure of wormlike shear banding flows in straight microchannels. The study revealed two effects, which should be generic for shear banding flows: the first is a strong amplification of the confinement induced by the edge of the channel, the second is an instability of the interface between the shear bands. A detailed quantitative comparison of our experimental measurements with a theoretical study of the diffusive Johnson Segalman model leads to excellent agreement. Our study clarifies the nature of shear banding flow instabilities, and shows that, despite the challenging complexity of the situation and the uncertainty regarding their molecular structure, shear banding flows in confined geometries are amenable to quantitative modelling, a feature that opens pathways to their practical utilization.
Exact solutions for laminar stratified flows of Newtonian/non-Newtonian shear-thinning fluids in horizontal and inclined channels are presented. An iterative algorithm is proposed to compute the laminar solution for the general case of a Carreau non-Newtonian fluid. The exact solution is used to study the effect of the rheology of the shear-thinning liquid on two-phase flow characteristics considering both gas/liquid and liquid/liquid systems. Concurrent and counter-current inclined systems are investigated, including the mapping of multiple solution boundaries. Aspects relevant to practical applications are discussed, such as the insitu hold-up, or lubrication effects achieved by adding a less viscous phase. A characteristic of this family of systems is that, even if the liquid has a complex rheology (Carreau fluid), the two-phase stratified flow can behave like the liquid is Newtonian for a wide range of operational conditions. The capability of the two-fluid model to yield satisfactory predictions in the presence of shear-thinning liquids is tested, and an algorithm is proposed to a priori predict if the Newtonian (zero shear rate viscosity) behaviour arises for a given operational conditions in order to avoid large errors in the predictions of flow characteristics when the power-law is considered for modelling the shear-thinning behaviour. Two-fluid model closures implied by the exact solution and the effect of a turbulent gas layer are also addressed.
Extremely small amounts of surface-active contaminants are known to drastically modify the hydrodynamic response of the water-air interface. Surfactant concentrations as low as a few thousand molecules per square micron are sufficient to eventually induce complete stiffening. In order to probe the shear response of a water-air interface, we design a radial flow experiment that consists in an upward water jet directed to the interface. We observe that the standard no-slip effect is often circumvented by an azimuthal instability with the occurence of a vortex pair. Supported by numerical simulations, we highlight that the instability occurs in the (inertia-less) Stokes regime and is driven by surfactant advection by the flow. The latter mechanism is suggested as a general feature in a wide variety of reported and yet unexplained observations.