Do you want to publish a course? Click here

CPT Symmetry in Projective de Sitter Universes

174   0   0.0 ( 0 )
 Added by Fabrizio Tamburini
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In a recent work, Boyle, Finn and Turok hypothesized a model of universe that does not violate the CPT-symmetry as alternative for inflation. With this approach they described the birth of the Universe from a pair of universes, one the CPT image of the other, living in pre- and post-big bang epochs. The CPT-invariance strictly constrains the vacuum states of the quantized fields, with notable consequences on the cosmological scenarios. Here we examine the validity of this proposal by adopting the point of view of archaic cosmology, based on de Sitter projective relativity, with an event-based reading of quantum mechanics, which is a consequence of the relationship between the universal information reservoir of the archaic universe and its out-of-equilibrium state through quantum jumps. In this scenario, the big bang is caused by the instability of the original (pre)vacuum with respect to the nucleation of micro-events that represent the actual creation of particles. Finally, we compare our results with those by Turok et al., including the analytic continuation across the big bang investigated by Volovik and show that many aspects of these cosmological scenarios find a clear physical interpretation by using our approach. Moreover, in the archaic universe framework we do not have to assume a priori the CPT-invariance like in the other models of universe, it is instead a necessary consequence of the archaic vacuum structure and the nucleation process, divided into two specular universes.

rate research

Read More

Viable models of modified gravity which satisfy both local as well as cosmological tests are investigated. It is demonstrated that so
171 - Cuihong Wen , Jieci Wang , 2019
We study the distribution of quantum steerability for continuous variables between two causally disconnected open charts in de Sitter space. It is shown that quantum steerability suffers from sudden death in de Sitter space, which is quite different from the behaviors of entanglement and discord because the latter always survives and the former vanishes only in the limit of infinite curvature. In addition, we find that the attainment of maximal steerability asymmetry indicates a transition between unidirectional steerable and bidirectional steerable. Unlike in the flat space, the asymmetry of quantum steerability can be completely destroyed in the limit of infinite curvature for the conformal and massless scalar fields in de Sitter space.
91 - Tomislav Prokopec 2011
We consider an O(N) symmetric scalar field model in the mean field (Hartree) approximation and show that the symmetry can be broken in de Sitter space. We find that the phase transition can be of first order, and that its strength depends non-analytically on the parameters of the model. We also show that the would-be Goldstone bosons acquire a mass, effectively becoming pseudo-Goldstone bosons, thus breaking the O(N) symmetry. Our results imply that topological defects can form during inflation.
We study the distribution of quantum entanglement for continuous variables among causally disconnected open charts in de Sitter space. It is found that genuine tripartite entanglement is generated among the open chart modes under the influence of curvature of de Sitter space for any nonzero squeezing. Bipartite entanglement is also generated when the curvature is strong enough, even though the observers are separated by the event horizon. This provides a clearcut interpretation of the two-mode squeezing mechanism in the de Sitter space. In addition, the curvature generated genuine tripartite entanglement is found to be less sensitive to the mass parameter than the generated bipartite entanglement. The effects of the curvature of de Sitter space on the generated entanglement become more apparent in the limit of conformal and massless scalar fields.
The equation of motion of an extended object in spacetime reduces to an ordinary differential equation in the presence of symmetry. By properly defining of the symmetry with notion of cohomogeneity, we discuss the method for classifying all these extended objects. We carry out the classification for the strings in the five-dimensional anti-de Sitter space by the effective use of the local isomorphism between $SO(4,2)$ and $SU(2,2)$. We present a general method for solving the trajectory of the Nambu-Goto string and apply to a case obtained by the classification, thereby find a new solution which has properties unique to odd-dimensional anti-de Sitter spaces. The geometry of the solution is analized and found to be a timelike helicoid-like surface.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا