High Cadence Optical Transient Searches using Drift Scan Imaging I: Proof of Concept with a Pre-Prototype System


Abstract in English

An imaging technique with sensitivity to short duration optical transients is described. The technique is based on the use of wide-field cameras operating in a drift scanning mode, whereby persistent objects produce trails on the sensor and short duration transients occupy localised groups of pixels. A benefit of the technique is that sensitivity to short duration signals is not accompanied by massive data rates, because the exposure time >> transient duration. The technique is demonstrated using a pre-prototype system composed of readily available and inexpensive commercial components, coupled with common coding environments, commercially available software, and free web-based services. The performance of the technique and the pre-prototype system is explored, including aspects of photometric and astrometric calibration, detection sensitivity, characterisation of candidate transients, and the differentiation of astronomical signals from non-astronomical signals (primarily glints from satellites in Earth orbit and cosmic ray hits on sensor pixels). Test observations were made using the pre-prototype system, achieving sensitivity to transients with 21 ms duration, resulting in the detection of five candidate transients. An investigation of these candidates concludes they are most likely due to cosmic ray hits on the sensor and/or satellites. The sensitivity obtained with the pre-prototype system is such that, under some models for the optical emission from FRBs, the detection of a typical FRB, such as FRB181228, to a distance of approximately 100 Mpc is plausible. Several options for improving the system/technique in the future are described.

Download