No Arabic abstract
In quiescence, Sgr A* is surprisingly dim, shining 100,000 times less than expected for its environment. This problem has motivated a host of theoretical models to explain radiatively inefficient accretion flows (RIAFs). The Chandra Galactic Center (GC) X-ray Visionary Program obtained approximately 3 Ms (one month) of Chandra HETG data, offering the only opportunity to examine the quiescent X-ray emission of Sgr A* with high resolution spectroscopy. Utilizing custom background regions and filters for removing overlapping point sources, this work provides the first ever look at stacked HETG spectra of Sgr A*. We model the background datasets with a cubic spline and fit the unbinned Sgr A* spectra with a simple parametric model of a power law plus Gaussian lines under the effects of interstellar extinction. We detect a strong 6.7 keV iron emission line in the HEG spectra and a 3.1 keV emission line in the MEG spectra. In all cases, the line centroids and equivalent widths are consistent with those measured from low-resolution CCD spectra. An examination of the unbinned, stacked HEG+/-1 spectrum reveals fine structure in the iron line complex. In addition to resolving the resonant and forbidden lines from He-like iron, there are apparent emission features arising with higher statistical significance at lower energy, potentially associated with FeXX-XXIV ions in a ~1 keV plasma arising near the Bondi radius of Sgr A*. With this work, we release the cleaned and stacked Sgr A* and background HETG spectra to the public as a special legacy dataset.
The soft gamma-ray repeater (SGR) 0526-66 is the first-identified magnetar, and is projected within the supernova remnant N49 in the Large Magellanic Cloud. Based on our ~50 ks NuSTAR observation, we detect the quiescent-state 0526-66 for the first time in the 10-40 keV band. Based on the joint analysis of our NuSTAR and the archival Chandra ACIS data, we firmly establish the presence of the nonthermal component in the X-ray spectrum of 0526-66 in addition to the thermal emission. In the best-fit blackbody (BB) plus power law (PL) model, the slope of the PL component (photon index Gamma = 2.1) is steeper than those (Gamma > ~1.5) for other magnetars. The soft part of the X-ray spectrum can be described with a BB component with the temperature of kT = 0.43 keV. The best-fit radius (R = 6.5 km) of the X-ray-emitting area is smaller than the canonical size of a neutron star. If we assume an underlying cool BB component with the canonical radius of R = 10 km for the neutron star in addition to the hot BB component (2BB + PL model), a lower BB temperature of kT = 0.24 keV is obtained for the passively cooling neutron starssurface, while the hot spot emission with kT = 0.46 keV dominates the thermal spectrum (~85% of the thermal luminosity in the 0.5-5 keV band). The nonthermal component (Gamma ~ 1.8) is still required.
We present the first systematic analysis of the X-ray variability of Sgr A* during the Chandra X-ray Observatorys 2012 Sgr A* X-ray Visionary Project (XVP). With 38 High Energy Transmission Grating Spectrometer (HETGS) observations spaced an average of 7 days apart, this unprecedented campaign enables detailed study of the X-ray emission from this supermassive black hole at high spatial, spectral and timing resolution. In 3 Ms of observations, we detect 39 X-ray flares from Sgr A*, lasting from a few hundred seconds to approximately 8 ks, and ranging in 2-10 keV luminosity from ~1e34 erg/s to 2e35 erg/s. Despite tentative evidence for a gap in the distribution of flare peak count rates, there is no evidence for X-ray color differences between faint and bright flares. Our preliminary X-ray flare luminosity distribution dN/dL is consistent with a power law with index -1.9 (+0.3 -0.4); this is similar to some estimates of Sgr A*s NIR flux distribution. The observed flares contribute one-third of the total X-ray output of Sgr A* during the campaign, and as much as 10% of the quiescent X-ray emission could be comprised of weak, undetected flares, which may also contribute high-frequency variability. We argue that flares may be the only source of X-ray emission from the inner accretion flow.
We present the first fully simultaneous fits to the NIR and X-ray spectral slope (and its evolution) during a very bright flare from Sgr A*, the supermassive black hole at the Milky Ways center. Our study arises from ambitious multi-wavelength monitoring campaigns with XMM-Newton, NuSTAR and SINFONI. The average multi-wavelength spectrum is well reproduced by a broken power-law with $Gamma_{NIR}=1.7pm0.1$ and $Gamma_X=2.27pm0.12$. The difference in spectral slopes ($DeltaGamma=0.57pm0.09$) strongly supports synchrotron emission with a cooling break. The flare starts first in the NIR with a flat and bright NIR spectrum, while X-ray radiation is detected only after about $10^3$ s, when a very steep X-ray spectrum ($DeltaGamma=1.8pm0.4$) is observed. These measurements are consistent with synchrotron emission with a cooling break and they suggest that the high energy cut-off in the electron distribution ($gamma_{max}$) induces an initial cut-off in the optical-UV band that evolves slowly into the X-ray band. The temporal and spectral evolution observed in all bright X-ray flares are also in line with a slow evolution of $gamma_{max}$. We also observe hints for a variation of the cooling break that might be induced by an evolution of the magnetic field (from $Bsim30pm8$ G to $Bsim4.8pm1.7$ G at the X-ray peak). Such drop of the magnetic field at the flare peak would be expected if the acceleration mechanism is tapping energy from the magnetic field, such as in magnetic reconnection. We conclude that synchrotron emission with a cooling break is a viable process for Sgr A*s flaring emission.
Chandra High Energy Transmission Grating Spectrometer observations of the supernova remnant 1E0102.2-7219 in the Small Magellanic Cloud reveal a spectrum dominated by X-ray emission lines from hydrogen-like and helium-like ions of oxygen, neon, magnesium and silicon, with little iron. The dispersed spectrum shows a series of monochromatic images of the source in the light of individual spectral lines. Detailed examination of these dispersed images reveals Doppler shifts within the supernova remnant, indicating bulk matter velocities on the order of 1000 km/s. These bulk velocities suggest an expanding ring-like structure with additional substructure, inclined to the line of sight. A two-dimensional spatial/velocity map of the SNR shows a striking spatial separation of redshifted and blueshifted regions, and indicates a need for further investigation before an adequate 3D model can be found. The radii of the ring-like images of the dispersed spectrum vary with ionization stage, supporting an interpretation of progressive ionization due to passage of the reverse shock through the ejecta. Plasma diagnostics with individual emission lines of oxygen are consistent with an ionizing plasma in the low density limit, and provide temperature and ionization constraints on the plasma. Assuming a pure metal plasma, the mass of oxygen is estimated at ~6 solar masses, consistent with a massive progenitor.
Classical novae occur on the surface of an accreting white dwarf in a binary system. After ejection of a fraction of the envelope and when the expanding shell becomes optically thin to X-rays, a bright source of supersoft X-rays arises, powered by residual H burning on the surface of the white dwarf. While the general picture of the nova event is well established, the details and balance of accretion and ejection processes in classical novae are still full of unknowns. The long-term balance of accreted matter is of special interest for massive accreting white dwarfs, which may be promising supernova Ia progenitor candidates. V5116 Sgr was observed as a bright and variable supersoft X-ray source by XMM-Newton 610~days after outburst. The light curve showed a periodicity consistent with the orbital period. During one third of the orbit the luminosity was a factor of seven brighter than during the other two thirds of the orbital period. In the present work we aim to disentangle the X-ray spectral components of V5116 Sgr and their variability. We present the high resolution spectra obtained with XMM-Newton RGS and Chandra LETGS/HRC-S in March and August 2007. The grating spectrum during the periods of high-flux shows a typical hot white dwarf atmosphere dominated by absorption lines of N VI and N VII. During the low-flux periods, the spectrum is dominated by an atmosphere with the same temperature as during the high-flux period, but with several emission features superimposed. Some of the emission lines are well modeled with an optically thin plasma in collisional equilibrium, rich in C and N, which also explains some excess in the spectra of the high-flux period. No velocity shifts are observed in the absorption lines, with an upper limit set by the spectral resolution of 500 km/s, consistent with the expectation of a non-expanding atmosphere so late in the evolution of the post-nova.