Do you want to publish a course? Click here

MNELLS: The MUSE Nearby Early-Type Galaxy Lens Locator Survey

83   0   0.0 ( 0 )
 Added by William Collier
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Low-redshift strong-lensing galaxies can provide robust measurements of the stellar mass-to-light ratios in early-type galaxies (ETG), and hence constrain variations in the stellar initial mass function (IMF). At present, only a few such systems are known. Here, we report the first results from a blind search for gravitationally-lensed emission line sources behind 52 massive $z$ $<$ 0.07 ETGs with MUSE integral field spectroscopy. For 16 galaxies, new observations were acquired, whilst the other 36 were analysed from archival data. This project has previously yielded one confirmed galaxy-scale strong lens (J0403-0239) which we report in an earlier paper. J0403-0239 has since received follow-up observations, presented here, which indicate support for our earlier IMF results. Three cluster-scale, and hence dark-matter-dominated, lensing systems were also discovered (central galaxies of A4059, A2052 and AS555). For nine further galaxies, we detect a singly-imaged but closely-projected source within 6 arcsec (including one candidate with sources at three different redshifts); such cases can be exploited to derive upper limits on the IMF mass-excess factor, $alpha$. Combining the new lens and new upper limits, with the previously-discovered systems, we infer an average $langle alpha rangle$ = 1.06 $pm$ 0.08 (marginalised over the intrinsic scatter), which is inconsistent with a Salpeter-like IMF ($alpha$ = 1.55) at the 6$sigma$ level. We test the detection threshold in these short-exposure MUSE observations with the injection and recovery of simulated sources, and predict that one in twenty-five observations is expected to yield a new strong-lens system. Our observational results are consistent with this expected yield.

rate research

Read More

Recently, large samples of visually classified early-type galaxies (ETGs) containing dust have been identified using space-based infrared observations with the Herschel Space Telescope. The presence of large quantities of dust in massive ETGs is peculiar as X-ray halos of these galaxies are expected to destroy dust in 10 Myr (or less). This has sparked a debate regarding the origin of the dust: is it internally produced by asymptotic giant branch (AGB) stars, or is it accreted externally through mergers? We examine the 2D stellar and ionised gas kinematics of dusty ETGs using IFS observations from the SAMI galaxy survey, and integrated star-formation rates, stellar masses, and dust masses from the GAMA survey. Only 8% (4/49) of visually-classified ETGs are kinematically consistent with being dispersion-supported systems. These dispersion-dominated galaxies exhibit discrepancies between stellar and ionised gas kinematics, either offsets in the kinematic position angle or large differences in the rotational velocity, and are outliers in star-formation rate at a fixed dust mass compared to normal star-forming galaxies. These properties are suggestive of recent merger activity. The remaining 90% of dusty ETGs have low velocity dispersions and/or large circular velocities, typical of rotation-dominated galaxies. These results, along with the general evidence of published works on X-ray emission in ETGs, suggest that they are unlikely to host hot, X-ray gas consistent with their low stellar mass when compared to dispersion-dominated galaxies. This means dust will be long lived and thus these galaxies do not require external scenarios for the origin of their dust content.
87 - E. Iodice , M. Spavone , M.A. Raj 2021
We present the first data release (DR1) of the VST Early-type GAlaxy Survey (VEGAS). This is a deep multi-band (ugri) imaging survey, carried out with the ESO VLT Survey Telescope (VST). To date, using about 90% of the total observing time, VEGAS has already collected 43 targets (groups and clusters of galaxies) covering a total area on the sky of about 95 square degrees. Taking advantage of the wide (1 deg^2) field-of-view of OmegaCAM@VST, the long integration time and the wide variety of targets, VEGAS has proven to be a gold mine to explore the structure of galaxies down to the faintest surface brightness levels of about 27-30 mag/arcsec^2 in the SDSS g band, for the dense clusters of galaxies and for the unexplored poor groups of galaxies. Based on the analysed data, VEGAS allowed us to i) study the galaxy outskirts, detect the intra-cluster light and low-surface brightness features in the intra-cluster/group space, ii) trace the mass assembly in galaxies, by estimating the accreted mass fraction in the stellar halos and provide results that can be directly compared with the predictions of galaxy formation models, iii) trace the spatial distribution of candidate globular clusters, and iv) detect the ultra-diffuse galaxies. With the DR1, we provide the reduced VST mosaics of 10 targets, which have been presented in the VEGAS publications. The data products are available via the ESO Science Portal (see http://www.eso.org/sci/observing/phase3/news.html#VEGAS-DR1).
Nuclear star clusters (NSCs) are found in at least 70% of all galaxies, but their formation path is still unclear. In the most common scenarios, NSCs form in-situ from the galaxys central gas reservoir, through merging of globular clusters (GCs), or through a combination of the two. As the scenarios pose different expectations for angular momentum and stellar population properties of the NSC in comparison to the host galaxy and the GC system, it is necessary to characterise the stellar light, NSC and GCs simultaneously. The large NSC (r$_rm{eff} = 66$ pc) and rich GC system of the early-type Fornax cluster galaxy FCC47 (NGC1336) render this galaxy an ideal laboratory to constrain NSC formation. Using MUSE science verification data assisted by adaptive optics, we obtained maps for the stellar kinematics and for stellar-population properties of FCC47. We extracted the spectra of the central NSC and determined line-of-sight velocities of 24 GCs and metallicities of five. FCC47 shows two decoupled components (KDCs): a rotating disk and the NSC. Our orbit-based dynamical Schwarzschild model revealed that the NSC is a distinct kinematic feature and it constitutes the peak of metallicity and old ages in the galaxy. The main body consists of two counter-rotating populations and is dominated by a more metal-poor population. The GC system is bimodal with a dominant metal-poor population and the total GC system mass is $sim 17%$ of the NSC mass ($sim$ 7 $times$ $10^8 M_odot$). The rotation, high metallicity and high mass of the NSC cannot be uniquely explained by GC-inspiral and most likely requires additional, but quickly quenched, in-situ formation. The presence of two KDCs most probably are evidence of a major merger that has altered the structure of FCC47 significantly, indicating the important role of galaxy mergers in forming the complex kinematics in the galaxy-NSC system.
The ACS Nearby Galaxy Survey Treasury (ANGST) is a systematic survey to establish a legacy of uniform multi-color photometry of resolved stars for a volume-limited sample of nearby galaxies (D<4 Mpc). The survey volume encompasses 69 galaxies in diverse environments, including close pairs, small & large groups, filaments, and truly isolated regions. The galaxies include a nearly complete range of morphological types spanning a factor of ~10^4 in luminosity and star formation rate. The survey data consists of images taken with ACS on HST, supplemented with archival data and new WFPC2 imaging taken after the failure of ACS. Survey images include wide field tilings covering the full radial extent of each galaxy, and single deep pointings in uncrowded regions of the most massive galaxies in the volume. The new wide field imaging in ANGST reaches median 50% completenesses of m_F475W=28.0 mag, m_F606W=27.3 mag, and m_F814W=27.3 mag, several magnitudes below the tip of the red giant branch (TRGB). The deep fields reach magnitudes sufficient to fully resolve the structure in the red clump. The resulting photometric catalogs are publicly accessible and contain over 34 million photometric measurements of >14 million stars. In this paper we present the details of the sample selection, imaging, data reduction, and the resulting photometric catalogs, along with an analysis of the photometric uncertainties (systematic and random), for both the ACS and WFPC2 imaging. We also present uniformly derived relative distances measured from the apparent magnitude of the TRGB.
Stellar metallicity gradients in the outer regions of galaxies are a critical tool for disentangling the contributions of in-situ and ex-situ formed stars. In the two-phase galaxy formation scenario, the initial gas collapse creates steep metallicity gradients, while the accretion of stars formed in satellites tends to flatten these gradients in the outskirts, particularly for massive galaxies. This work presents the first compilation of extended metallicity profiles over a wide range of galaxy mass. We use the DEIMOS spectrograph on the Keck telescope in multi-slit mode to obtain radial stellar metallicity profiles for 22 nearby early-type galaxies. From the calcium triplet lines in the near-infrared we measure the metallicity of the starlight up to 3 effective radii. We find a relation between the outer metallicity gradient and galaxy mass, in the sense that lower mass systems show steeper metallicity gradients than more massive galaxies. This result is consistent with a picture in which the ratio of ex-situ to in-situ formed stars is lower in less massive galaxies as a consequence of the smaller contribution by accretion. In addition, we infer a correlation between the strength of the calcium triplet feature in the near-infrared and the stellar initial mass function slope that is consistent with recent models in the literature.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا