No Arabic abstract
Shashlyk-type electromagnetic calorimeter (ECal) of the Multi-Purpose Detector at heavy-ion NICA collider is optimized to provide precise spatial and energy measurements for photons and electrons in the energy range from about 40 MeV to 2-3 GeV. To deal with high multiplicity of secondary particles from Au-Au reactions, ECal has a fine segmentation and consists of 38,400 cells (towers). Given the big number of towers and the time constraint, it is not possible to calibrate every ECal tower with beam. In this paper, we describe the strategy of the first-order calibration of ECal with cosmic muons.
The Multi-Purpose Detector (MPD) is designed to study a hot and dense baryonic matter formed in heavy-ion collisions at SQRT(sNN)=4-11 GeV at the NICA accelerator complex (Dubna, Russia). Large-sized electromagnetic calorimeter (ECal) of the MPD spectrometer will provide precise spatial and energy measurements for photons and electrons in the central pseudorapidity region of |eta|<1.2. The Shashlyk-type sampling structure of the ECal is optimized for the photons energy range from about 40 MeV to 2-3 GeV. Fine segmentation and projective geometry of the calorimeter allow to deal with high multiplicity of secondary particles from Au-Au reactions. In this talk, we report on a design, a construction status and expected parameters of the ECal.
The Heavy Photon Search experiment (HPS) is searching for a new gauge boson, the so-called heavy photon. Through its kinetic mixing with the Standard Model photon, this particle could decay into an electron-positron pair. It would then be detectable as a narrow peak in the invariant mass spectrum of such pairs, or, depending on its lifetime, by a decay downstream of the production target. The HPS experiment is installed in Hall-B of Jefferson Lab. This article presents the design and performance of one of the two detectors of the experiment, the electromagnetic calorimeter, during the runs performed in 2015-2016. The calorimeters main purpose is to provide a fast trigger and reduce the copious background from electromagnetic processes through matching with a tracking detector. The detector is a homogeneous calorimeter, made of 442 lead-tungstate (PbWO4) scintillating crystals, each read out by an avalanche photodiode coupled to a custom trans-impedance amplifier.
The calibration procedure of a finely granulated digital hadron calorimeter with Resistive Plate Chambers as active elements is described. Results obtained with a stack of nine layers exposed to muons from the Fermilab test beam are presented.
A silicon-tungsten (Si-W) sampling calorimeter, consisting of 19 alternate layers of silicon pad detectors (individual pad area of 1~cm$^2$) and tungsten absorbers (each of one radiation length), has been constructed for measurement of electromagnetic showers over a large energy range. The signal from each of the silicon pads is readout using an ASIC with a dynamic range from $-300$~fC to $+500$~fC. Another ASIC with a larger dynamic range, $pm 600$~fC has been used as a test study. The calorimeter was exposed to pion and electron beams at the CERN Super Proton Synchrotron (SPS) to characterise the response to minimum ionising particles (MIP) and showers from electromagnetic (EM) interactions. Pion beams of 120 GeV provided baseline measurements towards the understanding of the MIP behaviour in the silicon pad layers, while electron beams of energy from 5 GeV to 60 GeV rendered detailed shower profiles within the calorimeter. The energy deposition in each layer, the longitudinal shower profile, and the total energy deposition have been measured for each incident electron energy. Linear behaviour of the total measured energy ($E$) with that of the incident particle energy ($E_{0}$) ensured satisfactory calorimetric performance. For a subset of the data sample, selected based on the cluster position of the electromagnetic shower of the incident electron, the dependence of the measured energy resolution on $E_{0}$ has been found to be $sigma/E = (15.36/sqrt{E_0(mathrm{GeV)}} oplus 2.0) %$.
A BGO electromagnetic calorimeter (ECAL) is built for the DArk Matter Particle Explorer (DAMPE) mission. The effect of temperature on the BGO ECAL was investigated with a thermal vacuum experiment. The light output of a BGO crystal depends on temperature significantly. The temperature coefficient of each BGO crystal bar has been calibrated, and a correction method is also presented in this paper.