For Schrodinger operators on an interval with either convex or symmetric single-well potentials, and Robin or Neumann boundary conditions, the gap between the two lowest eigenvalues is minimised when the potential is constant. We also have results for the $p$-Laplacian.
In this paper we study the best constant in a Hardy inequality for the p-Laplace operator on convex domains with Robin boundary conditions. We show, in particular, that the best constant equals $((p-1)/p)^p$ whenever Dirichlet boundary conditions are imposed on a subset of the boundary of non-zero measure. We also discuss some generalizations to non-convex domains.
In this note the three dimensional Dirac operator $A_m$ with boundary conditions, which are the analogue of the two dimensional zigzag boundary conditions, is investigated. It is shown that $A_m$ is self-adjoint in $L^2(Omega;mathbb{C}^4)$ for any open set $Omega subset mathbb{R}^3$ and its spectrum is described explicitly in terms of the spectrum of the Dirichlet Laplacian in $Omega$. In particular, whenever the spectrum of the Dirichlet Laplacian is purely discrete, then also the spectrum of $A_m$ consists of discrete eigenvalues that accumulate at $pm infty$ and one additional eigenvalue of infinite multiplicity.
Let $Omegasubsetmathbb{R}^ u$, $ uge 2$, be a $C^{1,1}$ domain whose boundary $partialOmega$ is either compact or behaves suitably at infinity. For $pin(1,infty)$ and $alpha>0$, define [ Lambda(Omega,p,alpha):=inf_{substack{uin W^{1,p}(Omega) u otequiv 0}}dfrac{displaystyle int_Omega | abla u|^p mathrm{d} x - alphadisplaystyleint_{partialOmega} |u|^pmathrm{d}sigma}{displaystyleint_Omega |u|^pmathrm{d} x}, ] where $mathrm{d}sigma$ is the surface measure on $partialOmega$. We show the asymptotics [ Lambda(Omega,p,alpha)=-(p-1)alpha^{frac{p}{p-1}} - ( u-1)H_mathrm{max}, alpha + o(alpha), quad alphato+infty, ] where $H_mathrm{max}$ is the maximum mean curvature of $partialOmega$. The asymptotic behavior of the associated minimizers is discussed as well. The estimate is then applied to the study of the best constant in a boundary trace theorem for expanding domains, to the norm estimate for extension operators and to related isoperimetric inequalities.
The worldline formalism has been widely used to compute physical quantities in quantum field theory. However, applications of this formalism to quantum fields in the presence of boundaries have been studied only recently. In this article we show how to compute in the worldline approach the heat kernel expansion for a scalar field with boundary conditions of Robin type. In order to describe how this mechanism works, we compute the contributions due to the boundary conditions to the coefficients A_1, A_{3/2} and A_2 of the heat kernel expansion of a scalar field on the positive real line.
We explore boundary scattering in the sine-Gordon model with a non-integrable family of Robin boundary conditions. The soliton content of the field after collision is analysed using a numerical implementation of the direct scattering problem associated with the inverse scattering method. We find that an antikink may be reflected into various combinations of an antikink, a kink, and one or more breathers, depending on the values of the initial antikink velocity and a parameter associated with the boundary condition. In addition we observe regions with an intricate resonance structure arising from the creation of an intermediate breather whose recollision with the boundary is highly dependent on the breather phase.
Ben Andrews
,Julie Clutterbuck
,Daniel Hauer
.
(2020)
.
"The fundamental gap for a one-dimensional Schrodinger operator with Robin boundary conditions"
.
Julie Clutterbuck
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا