Transport mechanism in amorphous molybdenum silicide thin films


Abstract in English

Amorphous molybdenum silicide compounds have attracted significant interest for potential device applications, particularly in single-photon detector. In this work, the temperature-dependent resistance and magneto-resistance behaviors were measured to reveal the charge transport mechanism, which is of great importance for applications but is still insufficient. It is found that Mott variable hopping conductivity dominates the transport of sputtered amorphous molybdenum silicide thin films. Additionally, the observed magneto-resistance crossover from negative to positive is ascribed to the interference enhancement and the shrinkage of electron wave function, both of which vary the probability of hopping between localized sites.

Download