Do you want to publish a course? Click here

Text Perceptron: Towards End-to-End Arbitrary-Shaped Text Spotting

115   0   0.0 ( 0 )
 Added by Zhanzhan Cheng
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Many approaches have recently been proposed to detect irregular scene text and achieved promising results. However, their localization results may not well satisfy the following text recognition part mainly because of two reasons: 1) recognizing arbitrary shaped text is still a challenging task, and 2) prevalent non-trainable pipeline strategies between text detection and text recognition will lead to suboptimal performances. To handle this incompatibility problem, in this paper we propose an end-to-end trainable text spotting approach named Text Perceptron. Concretely, Text Perceptron first employs an efficient segmentation-based text detector that learns the latent text reading order and boundary information. Then a novel Shape Transform Module (abbr. STM) is designed to transform the detected feature regions into regular morphologies without extra parameters. It unites text detection and the following recognition part into a whole framework, and helps the whole network achieve global optimization. Experiments show that our method achieves competitive performance on two standard text benchmarks, i.e., ICDAR 2013 and ICDAR 2015, and also obviously outperforms existing methods on irregular text benchmarks SCUT-CTW1500 and Total-Text.



rate research

Read More

We propose an end-to-end trainable network that can simultaneously detect and recognize text of arbitrary shape, making substantial progress on the open problem of reading scene text of irregular shape. We formulate arbitrary shape text detection as an instance segmentation problem; an attention model is then used to decode the textual content of each irregularly shaped text region without rectification. To extract useful irregularly shaped text instance features from image scale features, we propose a simple yet effective RoI masking step. Additionally, we show that predictions from an existing multi-step OCR engine can be leveraged as partially labeled training data, which leads to significant improvements in both the detection and recognition accuracy of our model. Our method surpasses the state-of-the-art for end-to-end recognition tasks on the ICDAR15 (straight) benchmark by 4.6%, and on the Total-Text (curved) benchmark by more than 16%.
181 - Wenhai Wang , Enze Xie , Xiang Li 2021
Scene text detection and recognition have been well explored in the past few years. Despite the progress, efficient and accurate end-to-end spotting of arbitrarily-shaped text remains challenging. In this work, we propose an end-to-end text spotting framework, termed PAN++, which can efficiently detect and recognize text of arbitrary shapes in natural scenes. PAN++ is based on the kernel representation that reformulates a text line as a text kernel (central region) surrounded by peripheral pixels. By systematically comparing with existing scene text representations, we show that our kernel representation can not only describe arbitrarily-shaped text but also well distinguish adjacent text. Moreover, as a pixel-based representation, the kernel representation can be predicted by a single fully convolutional network, which is very friendly to real-time applications. Taking the advantages of the kernel representation, we design a series of components as follows: 1) a computationally efficient feature enhancement network composed of stacked Feature Pyramid Enhancement Modules (FPEMs); 2) a lightweight detection head cooperating with Pixel Aggregation (PA); and 3) an efficient attention-based recognition head with Masked RoI. Benefiting from the kernel representation and the tailored components, our method achieves high inference speed while maintaining competitive accuracy. Extensive experiments show the superiority of our method. For example, the proposed PAN++ achieves an end-to-end text spotting F-measure of 64.9 at 29.2 FPS on the Total-Text dataset, which significantly outperforms the previous best method. Code will be available at: https://git.io/PAN.
A crucial component for the scene text based reasoning required for TextVQA and TextCaps datasets involve detecting and recognizing text present in the images using an optical character recognition (OCR) system. The current systems are crippled by the unavailability of ground truth text annotations for these datasets as well as lack of scene text detection and recognition datasets on real images disallowing the progress in the field of OCR and evaluation of scene text based reasoning in isolation from OCR systems. In this work, we propose TextOCR, an arbitrary-shaped scene text detection and recognition with 900k annotated words collected on real images from TextVQA dataset. We show that current state-of-the-art text-recognition (OCR) models fail to perform well on TextOCR and that training on TextOCR helps achieve state-of-the-art performance on multiple other OCR datasets as well. We use a TextOCR trained OCR model to create PixelM4C model which can do scene text based reasoning on an image in an end-to-end fashion, allowing us to revisit several design choices to achieve new state-of-the-art performance on TextVQA dataset.
End-to-end text-spotting, which aims to integrate detection and recognition in a unified framework, has attracted increasing attention due to its simplicity of the two complimentary tasks. It remains an open problem especially when processing arbitrarily-shaped text instances. Previous methods can be roughly categorized into two groups: character-based and segmentation-based, which often require character-level annotations and/or complex post-processing due to the unstructured output. Here, we tackle end-to-end text spotting by presenting Adaptive Bezier Curve Network v2 (ABCNet v2). Our main contributions are four-fold: 1) For the first time, we adaptively fit arbitrarily-shaped text by a parameterized Bezier curve, which, compared with segmentation-based methods, can not only provide structured output but also controllable representation. 2) We design a novel BezierAlign layer for extracting accurate convolution features of a text instance of arbitrary shapes, significantly improving the precision of recognition over previous methods. 3) Different from previous methods, which often suffer from complex post-processing and sensitive hyper-parameters, our ABCNet v2 maintains a simple pipeline with the only post-processing non-maximum suppression (NMS). 4) As the performance of text recognition closely depends on feature alignment, ABCNet v2 further adopts a simple yet effective coordinate convolution to encode the position of the convolutional filters, which leads to a considerable improvement with negligible computation overhead. Comprehensive experiments conducted on various bilingual (English and Chinese) benchmark datasets demonstrate that ABCNet v2 can achieve state-of-the-art performance while maintaining very high efficiency.
78 - Hao Wang , Pu Lu , Hui Zhang 2019
Recently, end-to-end text spotting that aims to detect and recognize text from cluttered images simultaneously has received particularly growing interest in computer vision. Different from the existing approaches that formulate text detection as bounding box extraction or instance segmentation, we localize a set of points on the boundary of each text instance. With the representation of such boundary points, we establish a simple yet effective scheme for end-to-end text spotting, which can read the text of arbitrary shapes. Experiments on three challenging datasets, including ICDAR2015, TotalText and COCO-Text demonstrate that the proposed method consistently surpasses the state-of-the-art in both scene text detection and end-to-end text recognition tasks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا