Do you want to publish a course? Click here

Energy loss and friction characteristics of electrons at warm dense matter and non-ideal dense plasma conditions

364   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the energy loss characteristics of warm dense matter (WDM) and dense plasmas concentrating on the influence of electronic correlations. The basis for our analysis is a recently developed ab initio Quantum Monte-Carlo (QMC) based machine-learning representation of the static local field correction (LFC) [Dornheim et al., J. Chem. Phys. 151, 194104 (2019)], which provides an accurate description of the dynamical density response function of the electron gas at the considered parameters. We focus on the polarization-induced stopping power due to free electrons, the friction function, and the straggling rate. In addition, we compute the friction coefficient which constitutes a key quantity for the adequate Langevin dynamics simulation of ions. Considering typical experimental WDM parameters with partially degenerate electrons, we find that the friction coefficient is of the order of $gamma/omega_{pi}=0.01$, where $omega_{pi}$ is the ionic plasma frequency. This analysis is performed by comparing QMC based data to results from the random phase approximation (RPA), the Mermin dielectric function, and the Singwi-Tosi-Land-Sjolander (STLS) approximation. It is revealed that the widely used relaxation time approximation (Mermin dielectric function) has severe limitations regarding the description of the energy loss properties of correlated partially degenerate electrons. Moreover, by comparing QMC based data with the results obtained using STLS, we find that energy loss properties are not sensitive to the inaccuracy of the static LFC at large wave numbers $k/k_{F}>2$ (with $k_F$ being the usual Fermi wave number), but that a correct description of the static LFC at $k/k_{F}lesssim 1.5$ is important.



rate research

Read More

59 - Chang Gao , Shen Zhang , X. T. He 2018
The energy band structures caused by self-energy shifting that results in bound energy levels broadening and merging in warm dense aluminum and beryllium are observed. An energy band theory for warm dense matter (WDM) is proposed and a new code based on the energy band theory is developed to improve the traditional density functional method. Massive data of the equation of state and transport coefficients for WDM in medium and low Z have been simulated. The transition from fully degenerate to partially degenerate (related to WDM) and finally to non-degenerate state is investigated using the Lorenz number varying with the degeneracy parameter, and the lower and upper parameter boundaries for WDM are achieved. It is shown that the pressure ionization results in the Wiedemann-Franz law no longer available for WDM.
In a recent Letter [T.~Dornheim emph{et al.}, Phys.~Rev.~Lett.~textbf{125}, 085001 (2020)], we have presented the first emph{ab initio} results for the nonlinear density response of electrons in the warm dense matter regime. In the present work, we extend these efforts by carrying out extensive new path integral Monte Carlo (PIMC) simulations of a emph{ferromagnetic} electron gas that is subject to an external harmonic perturbation. This allows us to unambiguously quantify the impact of spin-effects on the nonlinear density response of the warm dense electron gas. In addition to their utility for the description of warm dense matter in an external magnetic field, our results further advance our current understanding of the uniform electron gas as a fundamental model system, which is important in its own right.
Warm dense matter (WDM) -- an exotic state of highly compressed matter -- has attracted high interest in recent years in astrophysics and for dense laboratory systems. At the same time, this state is extremely difficult to treat theoretically. This is due to the simultaneous appearance of quantum degeneracy, Coulomb correlations and thermal effects, as well as the overlap of plasma and condensed phases. Recent breakthroughs are due to the successful application of density functional theory (DFT) methods which, however, often lack the necessary accuracy and predictive capability for WDM applications. The situation has changed with the availability of the first textit{ab initio} data for the exchange-correlation free energy of the warm dense uniform electron gas (UEG) that were obtained by quantum Monte Carlo (QMC) simulations, for recent reviews, see Dornheim textit{et al.}, Phys. Plasmas textbf{24}, 056303 (2017) and Phys. Rep. textbf{744}, 1-86 (2018). In the present article we review recent further progress in QMC simulations of the warm dense UEG: namely, textit{ab initio} results for the static local field correction $G(q)$ and for the dynamic structure factor $S(q,omega)$. These data are of key relevance for the comparison with x-ray scattering experiments at free electron laser facilities and for the improvement of theoretical models. In the second part of this paper we discuss simulations of WDM out of equilibrium. The theoretical approaches include Born-Oppenheimer molecular dynamics, quantum kinetic theory, time-dependent DFT and hydrodynamics. Here we analyze strengths and limitations of these methods and argue that progress in WDM simulations will require a suitable combination of all methods. A particular role might be played by quantum hydrodynamics, and we concentrate on problems, recent progress, and possible improvements of this method.
Understanding many processes, e.g. fusion experiments, planetary interiors and dwarf stars, depends strongly on microscopic physics modeling of warm dense matter (WDM) and hot dense plasma. This complex state of matter consists of a transient mixture of degenerate and nearly-free electrons, molecules, and ions. This regime challenges both experiment and analytical modeling, necessitating predictive emph{ab initio} atomistic computation, typically based on quantum mechanical Kohn-Sham Density Functional Theory (KS-DFT). However, cubic computational scaling with temperature and system size prohibits the use of DFT through much of the WDM regime. A recently-developed stochastic approach to KS-DFT can be used at high temperatures, with the exact same accuracy as the deterministic approach, but the stochastic error can converge slowly and it remains expensive for intermediate temperatures (<50 eV). We have developed a universal mixed stochastic-deterministic algorithm for DFT at any temperature. This approach leverages the physics of KS-DFT to seamlessly integrate the best aspects of these different approaches. We demonstrate that this method significantly accelerated self-consistent field calculations for temperatures from 3 to 50 eV, while producing stable molecular dynamics and accurate diffusion coefficients.
Exploring and understanding ultrafast processes at the atomic level is a scientific challenge. Femtosecond X-ray Absorption Spectroscopy (XAS) is an essential experimental probing technic, as it can simultaneously reveal both electronic and atomic structures, and thus unravel their non-equilibrium dynamic interplay which is at the origin of most of the ultrafast mechanisms. However, despite considerable efforts, there is still no femtosecond X-ray source suitable for routine experiments. Here we show that betatron radiation from relativistic laser-plasma interaction combines ideal features for femtosecond XAS. It has been used to investigate the non-equilibrium transition of a copper sample brought at extreme conditions of temperature and pressure by a femtosecond laser pulse. We measured a rise time of the electron temperature below 100 fs. This first experiment demonstrates the great potential of the betatron source and paves the way to a new class of ultrafast experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا