Study of polycrystalline bulk Sr$_3$OsO$_6$ double-perovskite insulator: comparison with 1000 K ferromagnetic epitaxial films


Abstract in English

Polycrystalline Sr$_3$OsO$_6$, which is an ordered double-perovskite insulator, is synthesized via solid-state reaction under high-temperature and high-pressure conditions of 1200 $^circ$C and 6 GPa. The synthesis enables us to conduct a comparative study of the bulk form of Sr$_3$OsO$_6$ toward revealing the driving mechanism of 1000 K ferromagnetism, which has recently been discovered for epitaxially grown Sr$_3$OsO$_6$ films. Unlike the film, the bulk is dominated by antiferromagnetism rather than ferromagnetism. Therefore, robust ferromagnetic order appears only when Sr$_3$OsO$_6$ is under the influence of interfaces. A specific heat capacity of 39.6(9) 10$^{-3}$ J mol$^{-1}$ K$^{-2}$ is found at low temperatures ($<$17 K). This value is remarkably high, suggesting the presence of possible fermionic-like excitations at the magnetic ground state. Although the bulk and film forms of Sr$_3$OsO$_6$ share the same lattice basis and electrically insulating state, the magnetism is entirely different between them.

Download