Structural order matters: Enhanced electronic coupling in self assembled micro-crystals of Au-nanoclusters


Abstract in English

We report an easy and broadly applicable method for the controlled self-assembly of atomically precise Au32(nBu3P)12Cl8 nanoclusters into micro-crystals. This enables the determination of emergent optoelectronic properties resulting from long-range order in such assemblies. Compared to the same nanoclusters in glassy, polycrystalline ensembles, we find a 100-fold increase in the electric conductivity and charge carrier mobility as well as additional optical transitions. We show that these effects are due to a vanishing energetic disorder and a drastically reduced activation energy to charge transport in the highly ordered assemblies. This first structure-transport correlation on self-assembled superstructures of atomically precise gold nanoclusters paves the way towards functional materials with novel collective optoelectronic properties.

Download