No Arabic abstract
We study numerically the adsorption of a mixture of CO$_2$ and CH$_4$ on a graphite substrate covered by graphene nanoribbons (NRs). The NRs are flat and parallel to the graphite surface, at a variable distance ranging from 6 r{A} to 14 r{A}. We show that the NRs-graphite substrate acts as an effective filter for CO$_2$. Our study is based on Molecular Dynamics (MD) simulations. Methane is considered a spherical molecule, and carbon dioxide is represented as a linear rigid body. Graphite is modeled as a continuous material, while the NRs are approached atomistically. We observe that when the NRs are placed 6 r{A} above the graphite surface, methane is blocked out, while CO$_2$ molecules can diffuse and be collected in between the NRs and the graphite surface. Consequently, the selectivity of CO$_2$ is extremely high. We also observe that the initial rate of adsorption of CO$_2$ is much higher than CH$_4$. Overall we show that the filter can be optimized by controlling the gap between NRs and the NRs-graphite separation.
We determine, by means of density functional theory, the stability and the structure of graphene nanoribbon (GNR) edges in presence of molecules such as oxygen, water, ammonia, and carbon dioxide. As in the case of hydrogen-terminated nanoribbons, we find that the most stable armchair and zigzag configurations are characterized by a non-metallic/non-magnetic nature, and are compatible with Clars sextet rules, well known in organic chemistry. In particular, we predict that, at thermodynamic equilibrium, neutral GNRs in oxygen-rich atmosphere should preferentially be along the armchair direction, while water-saturated GNRs should present zigzag edges. Our results promise to be particularly useful to GNRs synthesis, since the most recent and advanced experimental routes are most effective in water and/or ammonia-containing solutions.
Nano-materials, such as metal-organic frameworks, have been considered to capture CO$_2$. However, their application has been limited largely because they exhibit poor selectivity for flue gases and low capture capacity under low pressures. We perform a high-throughput screening for selective CO$_2$ capture from flue gases by using first principles thermodynamics. We find that elements with empty d orbitals selectively attract CO$_2$ from gaseous mixtures under low CO$_2$ pressures at 300 K and release it at ~450 K. CO$_2$ binding to elements involves hybridization of the metal d orbitals with the CO$_2$ $pi$ orbitals and CO$_2$-transition metal complexes were observed in experiments. This result allows us to perform high-throughput screening to discover novel promising CO$_2$ capture materials with empty d orbitals and predict their capture performance under various conditions. Moreover, these findings provide physical insights into selective CO$_2$ capture and open a new path to explore CO$_2$ capture materials.
We investigate the spatial coarse-graining of interactions in host-guest systems within the framework of the recently proposed Interacting Pair Approximation (IPA). Basically, the IPA method derives local effective interactions from the knowledge of the bivariate histograms of the number of sorbate molecules (occupancy) in a pair of neighboring subvolumes, taken at different values of the chemical potential. Here we extend the IPA approach to the case in which every subvolume is surrounded by more than one class of neighbors, and we apply it on two systems: methane on a single graphene layer and methane between two graphene layers, at several temperatures and sorbate densities. We obtain coarse-grained (CG) adsorption isotherms and reduced variances of the occupancy in a quantitative agreement with reference atomistic simulations. A quantitative matching is also obtained for the occupancy correlations between neighboring subvolumes, apart from the case of high sorbate densities at low temperature, where the matching is refined by pre-processing the histograms through a quantized bivariate Gaussian distribution model.
We derive the generalized magneto-absorption spectra for curved graphene nanorib- bons and carbon nanotubes by using the Peierls tight-binding model. The main spectral characteristics and the optical selection rules result from the cooperative or competitive relationships between the geometric structure and a magnetic field. In curved ribbons, the dominant selection rule remains unchanged during the variation of the curvature. When the arc angle increases, the prominent peaks are split, with some even vanishing as the angle exceeds a critical value. In carbon nanotubes, the angular-momentum coupling induces extra selection rules, of which more are revealed due to the increase of either (both) of the factors: tube diameter and field strength. Particularly once the two factors exceed certain critical values, the optical spectra could reflect the quasi-Landau-level structures. The identifying features of the spec- tra provide insight into optical excitations for curved systems with either open or closed boundary condition.
Three typical one-dimensional (1D)/quasi-1D nanocarbons, linear carbon chains, carbon nanotubes, and graphene nanoribbons have been proven to grow inside single-wall carbon nanotubes. This gives rise to three types of hybrid materials whose behaviour and properties compared among each other are far from understood. After proving successful the synthesis of these nanostructured materials in recently published work, we have now been able to study their oxidation stability systematically by using resonance Raman spectroscopy. Surprisingly, the linear carbon chains, which have been theoretically predicted to be very unstable, are actually thermally stable up to 500 {deg}C assisted by the protection of the carbon nanotube hosts. Besides, longer linear carbon chains inside narrower CNTs are more stable than the shorter ones inside larger tubes, suggesting that the thermal stability not only depends on the length of linear carbon chains alone, but it is correlated with the confinement of the host tubes in a more complicated manner. In addition, graphene nanoribbons come overall in view as the most stable confined structures. On the other hand, peculiarities like the higher stability of the (6,5) CNT over its (6,4) counterpart allow this study to provide a solid platform for further studies on the application of these 1D nanocarbons (including true 1D linear carbon chains) at ambient conditions.