No Arabic abstract
We use the hydrodynamical simulation of our inner Galaxy presented in Armillotta et al. (2019) to study the gas distribution and kinematics within the CMZ. We use a resolution high enough to capture the gas emitting in dense molecular tracers such as NH3 and HCN, and simulate a time window of 50 Myr, long enough to capture phases during which the CMZ experiences both quiescent and intense star formation. We then post-process the simulated CMZ to calculate its spatially-dependent chemical and thermal state, producing synthetic emission data cubes and maps of both HI and the molecular gas tracers CO, NH3 and HCN. We show that, as viewed from Earth, gas in the CMZ is distributed mainly in two parallel and elongated features extending from positive longitudes and velocities to negative longitudes and velocities. The molecular gas emission within these two streams is not uniform, and it is mostly associated to the region where gas flowing towards the Galactic Center through the dust lanes collides with gas orbiting within the ring. Our simulated data cubes reproduce a number of features found in the observed CMZ. However, some discrepancies emerge when we use our results to interpret the position of individual molecular clouds. Finally, we show that, when the CMZ is near a period of intense star formation, the ring is mostly fragmented as a consequence of supernova feedback, and the bulk of the emission comes from star-forming molecular clouds. This correlation between morphology and star formation rate should be detectable in observations of extragalactic CMZs.
We present a study of the gas cycle and star formation history in the central 500 pc of the Milky Way, known as Central Molecular Zone (CMZ). Through hydrodynamical simulations of the inner 4.5 kpc of our Galaxy, we follow the gas cycle in a completely self-consistent way, starting from gas radial inflow due to the Galactic bar, the channelling of this gas into a dense, star-forming ring/stream at ~ 200 - 300 pc from the Galactic centre, and the launching of galactic outflows powered by stellar feedback. We find that star formation activity in the CMZ goes through oscillatory burst/quench cycles, with a period of tens to hundreds of Myr, characterised by roughly constant gas mass but order-of-magnitude level variations in the star formation rate. Comparison with the observed present-day star formation rate of the CMZ suggests that we are currently near a minimum of this cycle. Stellar feedback drives a mainly two-phase wind off the Galactic disc. The warm phase dominates the mass flux, and carries 100 - 200 % of the gas mass converted into stars. However, most of this gas goes into a fountain and falls back onto the disc rather than escaping the Galaxy. The hot phase carries most of the energy, with a time-averaged energy outflow rate of 10 - 20 % of the supernova energy budget.
We use hydrodynamical simulations to study the Milky Ways central molecular zone (CMZ). The simulations include a non-equilibrium chemical network, the gas self-gravity, star formation and supernova feedback. We resolve the structure of the interstellar medium at sub-parsec resolution while also capturing the interaction between the CMZ and the bar-driven large-scale flow out to $Rsim 5kpc$. Our main findings are as follows: (1) The distinction between inner ($Rlesssim120$~pc) and outer ($120lesssim Rlesssim450$~pc) CMZ that is sometimes proposed in the literature is unnecessary. Instead, the CMZ is best described as single structure, namely a star-forming ring with outer radius $Rsimeq 200$~pc which includes the 1.3$^circ$ complex and which is directly interacting with the dust lanes that mediate the bar-driven inflow. (2) This accretion can induce a significant tilt of the CMZ out of the plane. A tilted CMZ might provide an alternative explanation to the $infty$-shaped structure identified in Herschel data by Molinari et al. 2011. (3) The bar in our simulation efficiently drives an inflow from the Galactic disc ($Rsimeq 3$~kpc) down to the CMZ ($Rsimeq200$~pc) of the order of $1rm,M_odot,yr^{-1}$, consistent with observational determinations. (4) Supernova feedback can drive an inflow from the CMZ inwards towards the circumnuclear disc of the order of $sim0.03,rm M_odot,yr^{-1}$. (5) We give a new interpretation for the 3D placement of the 20 and 50 km s$^{-1}$ clouds, according to which they are close ($Rlesssim30$~pc) to the Galactic centre, but are also connected to the larger-scale streams at $Rgtrsim100$~pc.
The Milky Ways central molecular zone (CMZ) has emerged in recent years as a unique laboratory for the study of star formation. Here we use the simulations presented in Tress et al. 2020 to investigate star formation in the CMZ. These simulations resolve the structure of the interstellar medium at sub-parsec resolution while also including the large-scale flow in which the CMZ is embedded. Our main findings are as follows. (1) While most of the star formation happens in the CMZ ring at $Rgtrsim100 {, rm pc}$, a significant amount also occurs closer to SgrA* at $R lesssim 10{, rm pc}$. (2) Most of the star formation in the CMZ happens downstream of the apocentres, consistent with the pearls-on-a-string scenario, and in contrast to the notion that an absolute evolutionary timeline of star formation is triggered by pericentre passage. (3) Within the timescale of our simulations ($sim100$ Myr), the depletion time of the CMZ is constant within a factor of $sim2$. This suggests that variations in the star formation rate are primarily driven by variations in the mass of the CMZ, caused for example by AGN feedback or externally-induced changes in the bar-driven inflow rate, and not by variations in the depletion time. (4) We study the trajectories of newly born stars in our simulations. We find several examples that have age and 3D velocity compatible with those of the Arches and Quintuplet clusters. Our simulations suggest that these prominent clusters originated near the collision sites where the bar-driven inflow accretes onto the CMZ, at symmetrical locations with respect to the Galactic centre, and that they have already decoupled from the gas in which they were born.
The detailed distribution and kinematics of the atomic and the CO-bright molecular hydrogen in the disc of the Milky Way inside the Solar circle are derived under the assumptions of axisymmetry and pure circular motions. We divide the Galactic disc into a series of rings, and assume that the gas in each ring is described by four parameters: its rotation velocity, velocity dispersion, midplane density and its scale height. We fit these parameters to the Galactic HI and CO (J=1-0) data by producing artificial HI and CO line-profiles and comparing them with the observations. Our approach allows us to fit all parameters to the data simultaneously without assuming a-priori a radial profile for one of the parameters. We present the distribution and kinematics of the HI and H2 in both the approaching (QIV) and the receding (QI) regions of the Galaxy. Our best-fit models reproduces remarkably well the observed HI and CO longitude-velocity diagrams up to a few degrees of distance from the midplane. With the exception of the innermost 2.5 kpc, QI and QIV show very similar kinematics. The rotation curves traced by the HI and H2 follow closely each other, flattening beyond R=6.5 kpc. Both the HI and the H2 surface densities show a) a deep depression at 0.5<R<2.5 kpc, analogous to that shown by some nearby barred galaxies, b) local overdensities that can be interpreted in terms of spiral arms or ring-like features in the disk. The HI (H2) properties are fairly constant in the region outside the depression, with typical velocity dispersion of 8.9+/-1.1 (4.4+/-1.2) km/s, density of 0.43+/-0.11 (0.42+/-0.22) cm-3 and HWHM scale height of 202+/-28 (64+/-12) pc. We also show that the HI opacity in the LAB data can be accounted for by using an `effective spin temperature of about 150 K: assuming an optically thin regime leads to underestimate the HI mass by about 30%.
Observations of molecular gas near the Galactic centre ($| l | < 10^circ$, $| b | < 1^circ$) reveal the presence of a distinct population of enigmatic compact clouds which are characterised by extreme velocity dispersions ($Delta v > 100, rm km/s$). These Extended Velocity Features (EVFs) are very prominent in the datacubes and dominate the kinematics of molecular gas just outside the Central Molecular Zone (CMZ). The prototypical example of such a cloud is Bania Clump 2. We show that similar features are naturally produced in simulations of gas flow in a realistic barred potential. We analyse the structure of the features obtained in the simulations and use this to interpret the observations. We find that the features arise from collisions between material that has been infalling rapidly along the dust lanes of the Milky Way bar and material that belongs to one of the following two categories: (i) material that has `overshot after falling down the dust lanes on the opposite side; (ii) material which is part of the CMZ. Both types of collisions involve gas with large differences in the line-of-sight velocities, which is what produces the observed extreme velocity dispersions. Examples of both categories can be identified in the observations. If our interpretation is correct, we are directly witnessing (a) collisions of clouds with relative speeds of $sim 200, rm km/s$ and (b) the process of accretion of fresh gas onto the CMZ.