Do you want to publish a course? Click here

The positive tropical Grassmannian, the hypersimplex, and the m=2 amplituhedron

166   0   0.0 ( 0 )
 Added by Tomasz Lukowski
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The well-known moment map maps the Grassmannian $Gr_{k+1,n}$ and the positive Grassmannian $Gr^+_{k+1,n}$ onto the hypersimplex $Delta_{k+1,n}$, which is a polytope of codimension $1$ inside $mathbb{R}^n$. Over the last decades there has been a great deal of work on matroid subdivisions (and positroid subdivisions) of the hypersimplex; these are closely connected to the tropical Grassmannian and positive tropical Grassmannian. Meanwhile any $n times (k+2)$ matrix $Z$ with maximal minors positive induces a map $tilde{Z}$ from $Gr^+_{k,n}$ to the Grassmannian $Gr_{k,k+2}$, whose image has full dimension $2k$ and is called the $m=2$ amplituhedron $A_{n,k,2}$. As the positive Grassmannian has a decomposition into positroid cells, one may ask when the images of a collection of cells of $Gr^+_{k+1,n}$ give a dissection of the hypersimplex $Delta_{k+1,n}$. By dissection, we mean that the images of these cells are disjoint and cover a dense subset of the hypersimplex, but we do not put any constraints on how their boundaries match up. Similarly, one may ask when the images of a collection of positroid cells of $Gr^+_{k,n}$ give a dissection of the amplituhedron $mathcal{A}_{n,k,2}$. In this paper we observe a remarkable connection between these two questions: in particular, one may obtain a dissection of the amplituhedron from a dissection of the hypersimplex (and vice-versa) by applying a simple operation to cells that we call the T-duality map. Moreover, if we think of points of the positive tropical Grassmannian $mbox{Trop}^+Gr_{k+1,n}$ as height functions on the hypersimplex, the corresponding positroidal subdivisions of the hypersimplex induce particularly nice dissections of the $m=2$ amplituhedron $mathcal{A}_{n,k,2}$. Along the way, we provide a new characterization of positroid polytopes and prove new results about positroidal subdivisions of the hypersimplex.



rate research

Read More

We show that the number of combinatorial types of clusters of type $D_4$ modulo reflection-rotation is exactly equal to the number of combinatorial types of tropical planes in $mathbb{TP}^5$. This follows from a result of Sturmfels and Speyer which classifies these tropical planes into seven combinatorial classes using a detailed study of the tropical Grassmannian $operatorname{Gr}(3,6)$. Speyer and Williams show that the positive part $operatorname{Gr}^+(3,6)$ of this tropical Grassmannian is combinatorially equivalent to a small coarsening of the cluster fan of type $D_4$. We provide a structural bijection between the rays of $operatorname{Gr}^+(3,6)$ and the almost positive roots of type $D_4$ which makes this connection more precise. This bijection allows us to use the pseudotriangulations model of the cluster algebra of type $D_4$ to describe the equivalence of positive tropical planes in $mathbb{TP}^5$, giving a combinatorial model which characterizes the combinatorial types of tropical planes using automorphisms of pseudotriangulations of the octogon.
In this paper we provide a formula for the canonical differential form of the hypersimplex $Delta_{k,n}$ for all $n$ and $k$. We also study the generalization of the momentum amplituhedron $mathcal{M}_{n,k}$ to $m=2$, and we conclude that the existing definition does not possess the desired properties. Nevertheless, we find interesting momentum amplituhedron-like logarithmic differential forms in the $m=2$ version of the spinor helicity space, that have the same singularity structure as the hypersimplex canonical forms.
117 - Tomasz Lukowski 2019
Amplituhedra $mathcal{A}_{n,k}^{(m)}$ are geometric objects of great interest in modern mathematics and physics: for mathematicians they are combinatorially rich generalizations of polygons and polytopes, based on the notion of positivity; for physicists, the amplituhedron $mathcal{A}^{(4)}_{n,k}$ encodes the scattering amplitudes of the planar $mathcal{N}=4$ super Yang-Mills theory. In this paper we study the structure of boundaries for the amplituhedron $mathcal{A}_{n,k}^{(2)}$. We classify all boundaries of all dimensions and provide their graphical enumeration. We find that the boundary poset for the amplituhedron is Eulerian and show that the Euler characteristic of the amplituhedron equals one. This provides an initial step towards proving that the amplituhedron for $m=2$ is homeomorphic to a closed ball.
We define and study the totally nonnegative part of the Chow quotient of the Grassmannian, or more simply the nonnegative configuration space. This space has a natural stratification by positive Chow cells, and we show that nonnegative configuration space is homeomorphic to a polytope as a stratified space. We establish bijections between positive Chow cells and the following sets: (a) regular subdivisions of the hypersimplex into positroid polytopes, (b) the set of cones in the positive tropical Grassmannian, and (c) the set of cones in the positive Dressian. Our work is motivated by connections to super Yang-Mills scattering amplitudes, which will be discussed in a sequel.
We initiate the systematic study of emph{local positive spaces} which arise in the context of the Amplituhedron construction for scattering amplitudes in planar maximally supersymmetric Yang-Mills theory. We show that all local positive spaces relevant for one-loop MHV amplitudes are characterized by certain sign-flip conditions and are associated with surprisingly simple logarithmic forms. In the maximal sign-flip case they are finite one-loop octagons. Particular combinations of sign-flip spaces can be glued into new local positive geometries. These correspond to local pentagon integrands that appear in the local expansion of the MHV one-loop amplitude. We show that, geometrically, these pentagons do emph{not} triangulate the original Amplituhedron space but rather its twin Amplituhedron-Prime. This new geometry has the same boundary structure as the Amplituhedron (and therefore the same logarithmic form) but differs in the bulk as a geometric space. On certain two-dimensional boundaries, where the Amplituhedron geometry reduces to a polygon, we check that both spaces map to the same dual polygon. Interestingly, we find that the pentagons internally triangulate that dual space. This gives a direct evidence that the chiral pentagons are natural building blocks for a yet-to-be discovered dual Amplituhedron.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا