Monitoring several correlated quality characteristics of a process is common in modern manufacturing and service industries. Although a lot of attention has been paid to monitoring the multivariate process mean, not many control charts are available for monitoring the covariance matrix. This paper presents a comprehensive overview of the literature on control charts for monitoring the covariance matrix in a multivariate statistical process monitoring (MSPM) framework. It classifies the research that has previously appeared in the literature. We highlight the challenging areas for research and provide some directions for future research.
Exploiting the theory of state space models, we derive the exact expressions of the information transfer, as well as redundant and synergistic transfer, for coupled Gaussian processes observed at multiple temporal scales. All of the terms, constituting the frameworks known as interaction information decomposition and partial information decomposition, can thus be analytically obtained for different time scales from the parameters of the VAR model that fits the processes. We report the application of the proposed methodology firstly to benchmark Gaussian systems, showing that this class of systems may generate patterns of information decomposition characterized by mainly redundant or synergistic information transfer persisting across multiple time scales or even by the alternating prevalence of redundant and synergistic source interaction depending on the time scale. Then, we apply our method to an important topic in neuroscience, i.e., the detection of causal interactions in human epilepsy networks, for which we show the relevance of partial information decomposition to the detection of multiscale information transfer spreading from the seizure onset zone.
Machine and Statistical learning techniques become more and more important for the analysis of psychological data. Four core concepts of machine learning are the bias variance trade-off, cross-validation, regularization, and basis expansion. We present some early psychometric papers, from almost a century ago, that dealt with cross-validation and regularization. From this review it is safe to conclude that the origins of these lie partly in the field of psychometrics. From our historical review, two new ideas arose which we investigated further: The first is about the relationship between reliability and predictive validity; the second is whether optimal regression weights should be estimated by regularizing their values towards equality or shrinking their values towards zero. In a simulation study we show that the reliability of a test score does not influence the predictive validity as much as is usually written in psychometric textbooks. Using an empirical example we show that regularization towards equal regression coefficients is beneficial in terms of prediction error.
Measuring veracity or reliability of noisy data is of utmost importance, especially in the scenarios where the information are gathered through automated systems. In a recent paper, Chakraborty et. al. (2019) have introduced a veracity scoring technique for geostatistical data. The authors have used a high-quality `reference data to measure the veracity of the varying-quality observations and incorporated the veracity scores in their analysis of mobile-sensor generated noisy weather data to generate efficient predictions of the ambient temperature process. In this paper, we consider the scenario when no reference data is available and hence, the veracity scores (referred as VS) are defined based on `local summaries of the observations. We develop a VS-based estimation method for parameters of a spatial regression model. Under a non-stationary noise structure and fairly general assumptions on the underlying spatial process, we show that the VS-based estimators of the regression parameters are consistent. Moreover, we establish the advantage of the VS-based estimators as compared to the ordinary least squares (OLS) estimator by analyzing their asymptotic mean squared errors. We illustrate the merits of the VS-based technique through simulations and apply the methodology to a real data set on mass percentages of ash in coal seams in Pennsylvania.
Flexible multivariate covariance models for spatial data are on demand. This paper addresses the problem of parametric constraints for positive semidefiniteness of the multivariate Mat{e}rn model. Much attention has been given to the bivariate case, while highly multivariate cases have been explored to a limited extent only. The existing conditions often imply severe restrictions on the upper bounds for the collocated correlation coefficients, which makes the multivariate Mat{e}rn model appealing for the case of weak spatial cross-dependence only. We provide a collection of validity conditions for the multivariate Mat{e}rn covariance model that allows for more flexible parameterizations than those currently available. We also prove that, in several cases, we can attain much higher upper bounds for the collocated correlation coefficients in comparison with our competitors. We conclude with a simple illustration on a trivariate geochemical dataset and show that our enlarged parametric space allows for better fitting performance with respect to our competitors.
This paper presents the first general (supervised) statistical learning framework for point processes in general spaces. Our approach is based on the combination of two new concepts, which we define in the paper: i) bivariate innovations, which are measures of discrepancy/prediction-accuracy between two point processes, and ii) point process cross-validation (CV), which we here define through point process thinning. The general idea is to carry out the fitting by predicting CV-generated validation sets using the corresponding training sets; the prediction error, which we minimise, is measured by means of bivariate innovations. Having established various theoretical properties of our bivariate innovations, we study in detail the case where the CV procedure is obtained through independent thinning and we apply our statistical learning methodology to three typical spatial statistical settings, namely parametric intensity estimation, non-parametric intensity estimation and Papangelou conditional intensity fitting. Aside from deriving theoretical properties related to these cases, in each of them we numerically show that our statistical learning approach outperforms the state of the art in terms of mean (integrated) squared error.
Mohsen Ebadi
,Shojaeddin Chenouri
,Dennis K. J. Lin
.
(2020)
.
"Statistical Monitoring of the Covariance Matrix in Multivariate Processes: A Literature Review"
.
Mohsen Ebadi
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا