Local continuity of log-concave projection, with applications to estimation under model misspecification


Abstract in English

The log-concave projection is an operator that maps a d-dimensional distribution P to an approximating log-concave density. Prior work by D{u}mbgen et al. (2011) establishes that, with suitable metrics on the underlying spaces, this projection is continuous, but not uniformly continuous. In this work we prove a local uniform continuity result for log-concave projection -- in particular, establishing that this map is locally H{o}lder-(1/4) continuous. A matching lower bound verifies that this exponent cannot be improved. We also examine the implications of this continuity result for the empirical setting -- given a sample drawn from a distribution P, we bound the squared Hellinger distance between the log-concave projection of the empirical distribution of the sample, and the log-concave projection of P. In particular, this yields interesting statistical results for the misspecified setting, where P is not itself log-concave.

Download