In this paper, we introduce the notion of the Hom-Leibniz-Rinehart algebra as an algebraic analogue of Hom-Leibniz algebroid, and prove that such an arbitrary split regular Hom-Leibniz-Rinehart algebra $L$ is of the form $L=U+sum_gamma I_gamma$ with $U$ a subspace of a maximal abelian subalgebra $H$ and any $I_gamma$, a well described ideal of $L$, satisfying $[I_gamma, I_delta]= 0$ if $[gamma] eq [delta]$. In the sequel, we develop techniques of connections of roots and weights for split Hom-Leibniz-Rinehart algebras respectively. Finally, we study the structures of tight split regular Hom-Leibniz-Rinehart algebras.