Do you want to publish a course? Click here

The Early Merger that Made the Galaxys Stellar Halo

69   0   0.0 ( 0 )
 Added by N. W. Evans
 Publication date 2020
  fields Physics
and research's language is English
 Authors N.W. Evans




Ask ChatGPT about the research

The last two years have seen widespread acceptance of the idea that the Milky Way halo was largely created in an early (8-10 Gyr ago) and massive ($> 10^{10} M_odot$) merger. The roots of this idea pre-date the Gaia mission, but the exquisite proper motions available from Gaia have made the hypothesis irresistible. We trace the history of this idea, reviewing the series of papers that led to our current understanding.

rate research

Read More

299 - G.C. Myeong 2019
The Gaia Sausage is the major accretion event that built the stellar halo of the Milky Way galaxy. Here, we provide dynamical and chemical evidence for a second substantial accretion episode, distinct from the Gaia Sausage. The Sequoia Event provided the bulk of the high energy retrograde stars in the stellar halo, as well as the recently discovered globular cluster FSR 1758. There are up to 6 further globular clusters, including $omega$~Centauri, as well as many of the retrograde substructures in Myeong et al. (2018), associated with the progenitor dwarf galaxy, named the Sequoia. The stellar mass in the Sequoia galaxy is $sim 5 times 10^{7} M_odot$, whilst the total mass is $sim 10^{10} M_odot$, as judged from abundance matching or from the total sum of the globular cluster mass. Although clearly less massive than the Sausage, the Sequoia has a distinct chemo-dynamical signature. The strongly retrograde Sequoia stars have a typical eccentricity of $sim0.6$, whereas the Sausage stars have no clear net rotation and move on predominantly radial orbits. On average, the Sequoia stars have lower metallicity by $sim 0.3$ dex and higher abundance ratios as compared to the Sausage. We conjecture that the Sausage and the Sequoia galaxies may have been associated and accreted at a comparable epoch.
We use the kinematics of $sim200,000$ giant stars that lie within $sim 1.5$ kpc of the plane to measure the vertical profile of mass density near the Sun. We find that the dark mass contained within the isodensity surface of the dark halo that passes through the Sun ($(6pm0.9)times10^{10},mathrm{M_odot}$), and the surface density within $0.9$ kpc of the plane ($(69pm10),mathrm{M_odot,pc^{-2}}$) are almost independent of the (oblate) halos axis ratio $q$. If the halo is spherical, 46 per cent of the radial force on the Sun is provided by baryons, and only 4.3 per cent of the Galaxys mass is baryonic. If the halo is flattened, the baryons contribute even less strongly to the local radial force and to the Galaxys mass. The dark-matter density at the location of the Sun is $0.0126,q^{-0.89},mathrm{M_odot,pc^{-3}}=0.48,q^{-0.89},mathrm{GeV,cm^{-3}}$. When combined with other literature results we find hints for a mildly oblate dark halo with $q simeq 0.8$. Our value for the dark mass within the solar radius is larger than that predicted by cosmological dark-matter-only simulations but in good agreement with simulations once the effects of baryonic infall are taken into account. Our mass models consist of three double-exponential discs, an oblate bulge and a Navarro-Frenk-White dark-matter halo, and we model the dynamics of the RAVE stars in the corresponding gravitational fields by finding distribution functions $f(mathbf{J})$ that depend on three action integrals. Statistical errors are completely swamped by systematic uncertainties, the most important of which are the distance to the stars in the photometric and spectroscopic samples and the solar distance to the Galactic centre. Systematics other than the flattening of the dark halo yield overall uncertainties $sim 15$ per cent.
In this work we combine spectroscopic information from the textit{SkyMapper survey for Extremely Metal-Poor stars} and astrometry from Gaia DR2 to investigate the kinematics of a sample of 475 stars with a metallicity range of $ -6.5 leq rm [Fe/H] leq -2.05$ dex. Exploiting the action map, we identify 16 and 40 stars dynamically consistent with the textit{Gaia Sausage} and textit{Gaia Sequoia} accretion events, respectively. The most metal-poor of these candidates have metallicities of $rm [Fe/H]=-3.31$ and $rm [Fe/H]=-3.74$, respectively, helping to define the low-metallicity tail of the progenitors involved in the accretion events. We also find, consistent with other studies, that $sim$21% of the sample have orbits that remain confined to within 3~kpc of the Galactic plane, i.e., |Z$_{max}$| $leq$ 3~kpc. Of particular interest is a sub-sample ($sim$11% of the total) of low |Z$_{max}$| stars with low eccentricities and prograde motions. The lowest metallicity of these stars has [Fe/H] = --4.30 and the sub-sample is best interpreted as the very low-metallicity tail of the metal-weak thick disk population. The low |Z$_{max}$|, low eccentricity stars with retrograde orbits are likely accreted, while the low |Z$_{max}$|, high eccentricity pro- and retrograde stars are plausibly associated with the textit{Gaia Sausage} system. We find that a small fraction of our sample ($sim$4% of the total) is likely escaping from the Galaxy, and postulate that these stars have gained energy from gravitational interactions that occur when infalling dwarf galaxies are tidally disrupted.
We study stellar-halo formation using six Milky Way-mass galaxies in FIRE-2 cosmological zoom simulations. We find that $5-40%$ of the outer ($50-300$ kpc) stellar halo in each system consists of $textit{in-situ}$ stars that were born in outflows from the main galaxy. Outflow stars originate from gas accelerated by super-bubble winds, which can be compressed, cool, and form co-moving stars. The majority of these stars remain bound to the halo and fall back with orbital properties similar to the rest of the stellar halo at $z=0$.In the outer halo, outflow stars are more spatially homogeneous, metal rich, and alpha-element-enhanced than the accreted stellar halo. At the solar location, up to $sim 10 %$ of our kinematically-identified halo stars were born in outflows; the fraction rises to as high as $sim 40%$ for the most metal-rich local halo stars ([Fe/H] $> -0.5$). We conclude that the Milky Way stellar halo could contain local counterparts to stars that are observed to form in molecular outflows in distant galaxies. Searches for such a population may provide a new, near-field approach to constraining feedback and outflow physics. A stellar halo contribution from outflows is a phase-reversal of the classic halo formation scenario of Eggen, Lynden-Bell $&$ Sandange, who suggested that halo stars formed in rapidly $textit{infalling}$ gas clouds. Stellar outflows may be observable in direct imaging of external galaxies and could provide a source for metal-rich, extreme velocity stars in the Milky Way.
In the $Lambda$CDM paradigm the Galactic stellar halo is predicted to harbor the accreted debris of smaller systems. To identify these systems, the H3 Spectroscopic Survey, combined with $Gaia$, is gathering 6D phase-space and chemical information in the distant Galaxy. Here we present a comprehensive inventory of structure within 50 kpc from the Galactic center using a sample of 5684 giants at $|b|>40^{circ}$ and $|Z|>2$ kpc. We identify known structures including the high-$alpha$ disk, the in-situ halo (disk stars heated to eccentric orbits), Sagittarius (Sgr), $Gaia$-Sausage-Enceladus (GSE), the Helmi Streams, Sequoia, and Thamnos. Additionally, we identify the following new structures: (i) Aleph ([Fe/H]$=-0.5$), a low eccentricity structure that rises a surprising 10 kpc off the plane, (ii, iii) Arjuna ([Fe/H]$=-1.2$) and Iitoi ([Fe/H]$<-2$), which comprise the high-energy retrograde halo along with Sequoia, and (iv) Wukong ([Fe/H]$=-1.6$), a prograde phase-space overdensity chemically distinct from GSE. For each structure we provide [Fe/H], [$alpha$/Fe], and orbital parameters. Stars born within the Galaxy are a major component at $|Z|sim$2 kpc ($approx$60$%$), but their relative fraction declines sharply to $lesssim$5$%$ past 15 kpc. Beyond 15 kpc, $>$80$%$ of the halo is built by two massive ($M_{star}sim10^{8}-10^{9}M_{odot}$) accreted dwarfs: GSE ([Fe/H]$=-1.2$) within 25 kpc, and Sgr ([Fe/H]$=-1.0$) beyond 25 kpc. This explains the relatively high overall metallicity of the halo ([Fe/H]$approx-1.2$). We attribute $gtrsim$95$%$ of the sample to one of the listed structures, pointing to a halo built entirely from accreted dwarfs and heating of the disk.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا