Do you want to publish a course? Click here

Analytic m-isometries and weighted Dirichlet-type spaces

72   0   0.0 ( 0 )
 Added by Rajeev Gupta
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Corresponding to any $(m-1)$-tuple of semi-spectral measures on the unit circle, a weighted Dirichlet-type space is introduced and studied. We prove that the operator of multiplication by the coordinate function on these weighted Dirichlet-type spaces acts as an analytic $m$-isometry and satisfies a certain set of operator inequalities. Moreover, it is shown that an analytic $m$-isometry which satisfies this set of operator inequalities can be represented as an operator of multiplication by the coordinate function on a weighted Dirichlet-type space induced from an $(m-1)$-tuple of semi-spectral measures on the unit circle. This extends a result of Richter as well as of Olofsson on the class of analytic $2$-isometries. We also prove that all left invertible $m$-concave operators satisfying the aforementioned operator inequalities admit a Wold-type decomposition. This result serves as a key ingredient to our model theorem and also generalizes a result of Shimorin on a class of $3$-concave operators.



rate research

Read More

135 - Daniel Jupiter 2005
In this article we examine Dirichlet type spaces in the unit polydisc, and multipliers between these spaces. These results extend the corresponding work of G. D. Taylor in the unit disc. In addition, we consider functions on the polydisc whose restrictions to lower dimensional polydiscs lie in the corresponding Dirichet type spaces. We see that such functions need not be in the Dirichlet type space of the whole polydisc. Similar observations are made regarding multipliers.
86 - Yongjiang Duan , Siyu Wang , 2021
Let $mathcal{D}$ be the class of radial weights on the unit disk which satisfy both forward and reverse doubling conditions. Let $g$ be an analytic function on the unit disk $mathbb{D}$. We characterize bounded and compact Volterra type integration operators [ J_{g}(f)(z)=int_{0}^{z}f(lambda)g(lambda)dlambda ] between weighted Bergman spaces $L_{a}^{p}(omega )$ induced by $mathcal{D}$ weights and Hardy spaces $H^{q}$ for $0<p,q<infty$.
We prove that every isometry between two combinatorial spaces is determined by a permutation of the canonical unit basis combined with a change of signs. As a consequence, we show that in the case of Schreier spaces, all the isometries are given by a change of signs of the elements of the basis. Our results hold for both the real and the complex cases.
125 - Pascal Lef`evre 2020
We characterize the (essentially) decreasing sequences of positive numbers $beta$ = ($beta$ n) for which all composition operators on H 2 ($beta$) are bounded, where H 2 ($beta$) is the space of analytic functions f in the unit disk such that $infty$ n=0 |c n | 2 $beta$ n < $infty$ if f (z) = $infty$ n=0 c n z n. We also give conditions for the boundedness when $beta$ is not assumed essentially decreasing.
We study weighted $(PLB)$-spaces of ultradifferentiable functions defined via a weight function (in the sense of Braun, Meise and Taylor) and a weight system. We characterize when such spaces are ultrabornological in terms of the defining weight system. This generalizes Grothendiecks classical result that the space $mathcal{O}_M$ of slowly increasing smooth functions is ultrabornological to the context of ultradifferentiable functions. Furthermore, we determine the multiplier spaces of Gelfand-Shilov spaces and, by using the above result, characterize when such spaces are ultrabornological. In particular, we show that the multiplier space of the space of Fourier ultrahyperfunctions is ultrabornological, whereas the one of the space of Fourier hyperfunctions is not.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا