Do you want to publish a course? Click here

Simultaneous determination of neutron-induced fission and radiative-capture cross sections from decay probabilities obtained with a surrogate reaction

92   0   0.0 ( 0 )
 Added by Beatriz Jurado
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Reliable neutron-induced reaction cross sections of unstable nuclei are essential for nuclear astrophysics and applications but their direct measurement is often impossible. The surrogate-reaction method is one of the most promising alternatives to access these cross sections. In this work, we successfully applied the surrogate-reaction method to infer for the first time both the neutron-induced fission and radiative-capture cross sections of 239Pu in a consistent manner from a single measurement. This was achieved by combining simultaneously-measured fission and gamma-emission probabilities for the 240Pu(4He,4He) surrogate reaction with a calculation of the angular-momentum and parity distributions populated in this reaction. While other experiments measure the probabilities for some selected gamma-ray transitions, we measure the gamma-emission probability. This enlarges the applicability of the surrogate-reaction method.



rate research

Read More

106 - Q. Ducasse , B. Jurado , M. Aiche 2015
We investigated the 238U(d,p) reaction as a surrogate for the n + 238U reaction. For this purpose we measured for the first time the gamma-decay and fission probabilities of 239U* simultaneously and compared them to the corresponding neutron-induced data. We present the details of the procedure to infer the decay probabilities, as well as a thorough uncertainty analysis, including parameter correlations. Calculations based on the continuum-discretized coupled-channels and distorted-wave Born approximations were used to correct our data from detected protons originating from elastic and inelastic deuteron breakup. In the region where the fission and gamma-decay probabilities compete, the corrected fission probability is in agreement with neutron-induced data, whereas the gamma-decay probability is much higher than the neutron-induced data. The performed statistical-model calculations are not able to explain these results.
Alternative methods to calculate neutron capture cross sections on radioactive nuclei are reported using the theory of Inclusive Non-Elastic Breakup (INEB) developed by Hussein and McVoy [1]. The statistical coupled-channels theory proposed in Ref. [2] is further extended in the realm of random matrices. The case of reactions with the projectile and the target being two-cluster nuclei is also analyzed and applications are made for scattering from a deuteron target [3]. An extension of the theory to a three-cluster projectile incident on a two-cluster target is also discussed. The theoretical developments described here should open new possibilities to obtain information on the neutron capture cross sections of radioactive nuclei using indirect methods.
49 - E.V.Prokhorova 2003
The capture-fission cross-sections in an energy range of 206-242 MeV of 48Ca-projectiles and mass-energy distributions (MEDs) of reaction products in an energy range of 211-242 MeV have been measured in the 48Ca+208Pb reaction using the double-arm time-of-flight spectrometer CORSET. The MEDs of fragments for heated fission were shown to consist of two components. One component, which is due to classical fusion-fission, is associated with the symmetric fission of the 256No compound nucleus. The other component, which appears as shoulders, is associated with the quasi-fission process and can be named quasi-fission shoulders. Those quasi-fission shoulders enclose light fragments whose masses are 60-90 a.m.u. The total kinetic energy (TKE) of the fragments that belong to the shoulders is higher than the value expected for a classical fusion-fission process. We have come to the conclusion that in quasi-fission, spherical shells with Z=28 and N=50 play a great role. It has also been demonstrated that the properties of the MEDs of fragments formally agree with a well-known hypothesis of two independent fission modes; in this case the modes are normal fusion-fission and quasi-fission processes. A high-energetic Super-Short mode of classical fission has been found at low excitation energies in the mass range of heavy fragments M = 130-135 and TKE = 233 MeV; however the yield associated with this mode is small.
The neutron-capture reaction plays a critical role in the synthesis of the elements in stars and is important for societal applications including nuclear power generation and stockpile-stewardship science. However, it is difficult - if not impossible - to directly measure neutron capture cross sections for the exotic, short-lived nuclei that participate in these processes. In this Letter we demonstrate a new technique which can be used to indirectly determine neutron-capture cross sections for exotic systems. This technique makes use of the $(d,p)$ transfer reaction, which has long been used as a tool to study the structure of nuclei. Recent advances in reaction theory, together with data collected using this reaction, enable the determination of neutron-capture cross sections for short-lived nuclei. A benchmark study of the $^{95}$Mo$(d,p)$ reaction is presented, which illustrates the approach and provides guidance for future applications of the method with short-lived isotopes produced at rare isotope accelerators.
In our previous paper, we predicted $sigma_{rm R}$ for $^{40-60,62,64}$Ca+ $^{12}$C scattering at 280 MeV/u, using the Kyushu (chiral) $g$-matrix folding model with the densities calculated with D1S-GHFB with and without the AMP. Interaction cross sections $sigma_{rm I}$ are available for $^{42-51}$Ca + $^{12}$C scattering, whereas $sigma_{rm R}$ are available for p+$^{48}$Ca scattering. As for $^{48}$Ca, the high-resolution $E1$ polarizability experiment ($E1$pE) yields $r_{rm skin}^{48}(E1{rm pE}) =0.14 sim 0.20~{rm fm}$. We determine $r_{rm skin}^{48}({rm exp})$ from the data on $sigma_{rm R}$ for p+$^{48}$Ca scattering and from the data on $sigma_{rm I}$ for $^{48}$Ca+$^{12}$C scattering. We use the chiral (Kyushu) $g$-matrix folding model with the densities calculated with the Gogny-D1M Hartree-Fock-Bogoliubov with the AMP. The D1M-GHFB+AMP proton and neutron densities are scaled so as to reproduce the data under the condition that the radius $r_{rm p}$ of the scaled proton density equals the data $r_{rm p}({rm exp})$ of the electron scattering. The neutron radius $r_{rm n}$ thus obtained is an experimental value. Our results are $r_{rm skin}^{48}({rm exp})=-0.031sim 0.183$fm for p+$^{48}$Ca and $0.100 sim 0.218$fm for $^{48}$Ca + $^{12}$C scattering. Using the $r_{rm skin}^{48}$-$r_{rm skin}^{208}$ relation with a high correlation coefficient $R=0.99$, we have transformed $r_{rm skin}^{208}({rm PREXII})$ and $r_{rm skin}^{208}(E1{rm pE})$ to the corresponding values $r_{rm skin}^{48}({rm tPREXII})$ and $r_{rm skin}^{48}({rm t}E1{rm pE})$. The transformed data $r_{rm skin}^{48}({rm tPREXII})=0.190 sim 0.268$fm is consistent with $r_{rm skin}^{48}=0.102 sim 0.218$fm for $^{48}$Ca + $^{12}$C. Our final result is $r_{rm skin}^{48}=0.102 sim 0.218$fm determined from $^{48}$Ca + $^{12}$C scattering.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا