No Arabic abstract
In recent years, novel two-dimensional materials such as graphene, bismuthene and transition-metal dichalcogenides have attracted considerable interest due to their unique physical properties. A range of physical effects can be transferred to the realms of photonics by creating artificial photonic lattices emulating these two-dimensional materials. Here, exciton-polaritons in semiconductor microcavities offer an exciting opportunity to study a part-light, part-matter quantum fluid of light in a complex lattice potential. In this paper, we study exciton-polaritons in a two-dimensional Lieb lattice of buried optical traps. The $S$ and $P_{xy}$ photonic orbitals of such a Lieb lattice give rise to the formation of two flatbands which are of greatest interest for the distortion-free storage of compact localized states. By using a well controlled etch-and-overgrowth technique, we manage to control the trapping as well as the site couplings with great precision. This allows us to spectroscopically monitor the flatness of the flatbands across the full Brillouin zone. Furthermore, we demonstrate experimentally that these flatbands can be directly populated by condensation under non-resonant laser excitation. Finally, using this advanced device approach we demonstrate resonant and deterministic excitation of flatband modes in transmission geometry. Our findings establish the exciton-polariton systems as a highly controllable, optical many-body system to study flatband effects and for distortion-free storage of compact localized states.
We study exciton-polaritons in a two-dimensional Lieb lattice of micropillars. The energy spectrum of the system features two flat bands formed from $S$ and $P_{x,y}$ photonic orbitals, into which we trigger bosonic condensation under high power excitation. The symmetry of the orbital wave functions combined with photonic spin-orbit coupling gives rise to emission patterns with pseudospin texture in the flat band condensates. Our work shows the potential of polariton lattices for emulating flat band Hamiltonians with spin-orbit coupling, orbital degrees of freedom and interactions.
We present a simple method to create an in-plane lateral potential in a semiconductor microcavity using a metal thin-film. Two types of potential are produced: a circular aperture and a one-dimensional (1D) periodic grating pattern. The amplitude of the potential induced by a 24 nm-6 nm Au/Ti film is on the order of a few hundreds of ueV measured at 6 ~ 8 K. Since the metal layer makes the electromagnetic fields to be close to zero at the metal-semiconductor interface, the photon mode is confined more inside of the cavity. As a consequence, the effective cavity length is reduced under the metal film, and the corresponding cavity resonance is blue-shifted. Our experimental results are in a good agreement with theoretical estimates. In addition, by applying a DC electric voltage to the metal film, we are able to modify the quantum well exciton mode due to the quantum confined Stark effect, inducing a ~ 1 meV potential at ~ 20 kV/cm. Our method produces a controllable in-plane spatial trap potential for lower exciton-polaritons (LPs), which can be a building block towards 1D arrays and 2D lattices of LP condensates.
The dispersion properties of exciton polaritons in multiple-quantum-well based resonant photonic crystals are studied. In the case of structures with an elementary cell possessing a mirror symmetry with respect to its center, a powerful analytical method for deriving and analyzing dispersion laws of the respective normal modes is developed. The method is used to analyze band structure and dispersion properties of several types of resonant photonic crystals, which would not submit to analytical treatment by other approaches. These systems include multiple quantum well structures with an arbitrary periodic modulation of the dielectric function and structures with a complex elementary cell. Special attention was paid to determining conditions for superradiance (Bragg resonance) in these structures, and to the properties of the polariton stop band in the case when this condition is fulfilled (Bragg structures). The dependence of the band structure on the angle of propagation, the polarization of the wave, and the effects due to exciton homogeneous and inhomogeneous broadenings are considered, as well as dispersion properties of excitations in near-Bragg structures.
Two-dimensional transition metal dichalcogenide (TMD) semiconductors provide a unique possibility to access the electronic valley degree of freedom using polarized light, opening the way to valley information transfer between distant systems. Excitons with a well-defined valley index (or valley pseudospin) as well as superpositions of the exciton valley states can be created with light having circular and linear polarization, respectively. However, the generated excitons have short lifetimes (ps) and are also subject to the electron-hole exchange interaction leading to fast relaxation of the valley pseudospin and coherence. Here we show that control of these processes can be gained by embedding a monolayer of WSe$_2$ in an optical microcavity, where part-light-part-matter exciton-polaritons are formed in the strong light-matter coupling regime. We demonstrate the optical initialization of the valley coherent polariton populations, exhibiting luminescence with a linear polarization degree up to 3 times higher than that of the excitons. We further control the evolution of the polariton valley coherence using a Faraday magnetic field to rotate the valley pseudospin by an angle defined by the exciton-cavity-mode detuning, which exceeds the rotation angle in the bare exciton. This work provides unique insight into the decoherence mechanisms in TMDs and demonstrates the potential for engineering the valley pseudospin dynamics in monolayer semiconductors embedded in photonic structures.
Exciton-polaritons are mixed light-matter quasiparticles. We have developed a statistical model describing stochastic exciton-photon transitions within a condensate of exciton polaritons. We show that the exciton-photon correlator depends on the hidden variable which characterizes the rate of exciton-photon transformations in the condensate. We discuss implications of this effect for the quantum statistics of photons emitted by polariton lasers.