Do you want to publish a course? Click here

A variational characterization of the optimal exit rate for controlled diffusions

57   0   0.0 ( 0 )
 Added by Ari Arapostathis
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The main result in this paper is a variational formula for the exit rate from a bounded domain for a diffusion process in terms of the stationary law of the diffusion constrained to remain in this domain forever. Related results on the geometric ergodicity of the controlled Q-process are also presented.



rate research

Read More

88 - Xihao He , Xiaolu Tan , Jun Zou 2021
We study a principal-agent problem with one principal and multiple agents. The principal provides an exit contract which is identical to all agents, then each agent chooses her/his optimal exit time with the given contract. The principal looks for an optimal contract in order to maximize her/his reward value which depends on the agents choices. Under a technical monotone condition, and by using Bank-El Karouis representation of stochastic process, we are able to decouple the two optimization problems, and to reformulate the principals problem into an optimal control problem. The latter is also equivalent to an optimal multiple stopping problem and the existence of the optimal contract is obtained. We then show that the continuous time problem can be approximated by a sequence of discrete time ones, which would induce a natural numerical approximation method. We finally discuss the principal-agent problem if one restricts to the class of all Markovian and/or continuous contracts.
Given a domain G, a reflection vector field d(.) on the boundary of G, and drift and dispersion coefficients b(.) and sigma(.), let L be the usual second-order elliptic operator associated with b(.) and sigma(.). Under suitable assumptions that, in particular, ensure that the associated submartingale problem is well posed, it is shown that a probability measure $pi$ on bar{G} is a stationary distribution for the corresponding reflected diffusion if and only if $pi (partial G) = 0$ and $int_{bar{G}} L f (x) pi (dx) leq 0$ for every f in a certain class of test functions. Moreover, the assumptions are shown to be satisfied by a large class of reflected diffusions in piecewise smooth multi-dimensional domains with possibly oblique reflection.
Tight estimates of exit/containment probabilities are of particular importance in many control problems. Yet, estimating the exit/containment probabilities is non-trivial: even for linear systems (Ornstein-Uhlenbeck processes), the containment probability can be computed exactly for only some particular values of the system parameters. In this paper, we derive tight bounds on the containment probability for a class of nonlinear stochastic systems. The core idea is to compare the pull strength (how hard the deterministic part of the system dynamics pulls towards the origin) experienced by the nonlinear system at hand with that of a well-chosen process for which tight estimates of the containment probability are known or can be numerically obtained (e.g. an Ornstein-Uhlenbeck process). Specifically, the main technical contribution of this paper is to define a suitable dominance relationship between the pull strengths of two systems and to prove that this dominance relationship implies an order relationship between their containment probabilities. We also discuss the link with contraction theory and highlight some examples of applications.
82 - Daniel Lacker 2016
This paper rigorously connects the problem of optimal control of McKean-Vlasov dynamics with large systems of interacting controlled state processes. Precisely, the empirical distributions of near-optimal control-state pairs for the $n$-state systems, as $n$ tends to infinity, admit limit points in distribution (if the objective functions are suitably coercive), and every such limit is supported on the set of optimal control-state pairs for the McKean-Vlasov problem. Conversely, any distribution on the set of optimal control-state pairs for the McKean-Vlasov problem can be realized as a limit in this manner. Arguments are based on controlled martingale problems, which lend themselves naturally to existence proofs; along the way it is shown that a large class of McKean-Vlasov control problems admit optimal Markovian controls.
We present an improved analysis of the Euler-Maruyama discretization of the Langevin diffusion. Our analysis does not require global contractivity, and yields polynomial dependence on the time horizon. Compared to existing approaches, we make an additional smoothness assumption, and improve the existing rate from $O(eta)$ to $O(eta^2)$ in terms of the KL divergence. This result matches the correct order for numerical SDEs, without suffering from exponential time dependence. When applied to algorithms for sampling and learning, this result simultaneously improves all those methods based on Dalayans approach.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا