Order-disorder phase transition in black-hole star clusters -- III. A mono-energetic cluster


Abstract in English

Supermassive black holes at the centres of galaxies are often surrounded by dense star clusters. For a wide range of cluster properties and orbital radii the resonant relaxation times in these clusters are much shorter than the Hubble time. Since resonant relaxation conserves semimajor axes, these clusters should be in the maximum-entropy state consistent with the given semimajor axis distribution. We determine these maximum-entropy equilibria in a simplified model in which all of the stars have the same semimajor axes. We find that the cluster exhibits a phase transition from a disordered, spherical, high-temperature equilibrium to an ordered low-temperature equilibrium in which the stellar orbits have a preferred orientation or line of apsides. Here `temperature is a measure of the non-Keplerian or self-gravitational energy of the cluster; in the spherical state, temperature is a function of the rms eccentricity of the stars. We explore a simple two-parameter model of black-hole star clusters -- the two parameters are semimajor axis and black-hole mass --- and find that clusters are susceptible to the lopsided phase transition over a range of ~100 in semimajor axis, mostly for black-hole masses less than $10^{7.5}$ solar masses.

Download