Do you want to publish a course? Click here

3D Point Cloud Enhancement using Graph-Modelled Multiview Depth Measurements

131   0   0.0 ( 0 )
 Added by Xue Zhang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

A 3D point cloud is often synthesized from depth measurements collected by sensors at different viewpoints. The acquired measurements are typically both coarse in precision and corrupted by noise. To improve quality, previous works denoise a synthesized 3D point cloud a posteriori after projecting the imperfect depth data onto 3D space. Instead, we enhance depth measurements on the sensed images a priori, exploiting inherent 3D geometric correlation across views, before synthesizing a 3D point cloud from the improved measurements. By enhancing closer to the actual sensing process, we benefit from optimization targeting specifically the depth image formation model, before subsequent processing steps that can further obscure measurement errors. Mathematically, for each pixel row in a pair of rectified viewpoint depth images, we first construct a graph reflecting inter-pixel similarities via metric learning using data in previous enhanced rows. To optimize left and right viewpoint images simultaneously, we write a non-linear mapping function from left pixel row to the right based on 3D geometry relations. We formulate a MAP optimization problem, which, after suitable linear approximations, results in an unconstrained convex and differentiable objective, solvable using fast gradient method (FGM). Experimental results show that our method noticeably outperforms recent denoising algorithms that enhance after 3D point clouds are synthesized.



rate research

Read More

110 - Qi Yang , Zhan Ma , Yiling Xu 2020
We propose the GraphSIM -- an objective metric to accurately predict the subjective quality of point cloud with superimposed geometry and color impairments. Motivated by the facts that human vision system is more sensitive to the high spatial-frequency components (e.g., contours, edges), and weighs more to the local structural variations rather individual point intensity, we first extract geometric keypoints by resampling the reference point cloud geometry information to form the object skeleton; we then construct local graphs centered at these keypoints for both reference and distorted point clouds, followed by collectively aggregating color gradient moments (e.g., zeroth, first, and second) that are derived between all other points and centered keypoint in the same local graph for significant feature similarity (a.k.a., local significance) measurement; Final similarity index is obtained by pooling the local graph significance across all color channels and by averaging across all graphs. Our GraphSIM is validated using two large and independent point cloud assessment datasets that involve a wide range of impairments (e.g., re-sampling, compression, additive noise), reliably demonstrating the state-of-the-art performance for all distortions with noticeable gains in predicting the subjective mean opinion score (MOS), compared with those point-wise distance-based metrics adopted in standardization reference software. Ablation studies have further shown that GraphSIM is generalized to various scenarios with consistent performance by examining its key modules and parameters.
225 - Wei Hu , Qianjiang Hu , Zehua Wang 2019
The prevalence of accessible depth sensing and 3D laser scanning techniques has enabled the convenient acquisition of 3D dynamic point clouds, which provide efficient representation of arbitrarily-shaped objects in motion. Nevertheless, dynamic point clouds are often perturbed by noise due to hardware, software or other causes. While a plethora of methods have been proposed for static point cloud denoising, few efforts are made for the denoising of dynamic point clouds with varying number of irregularly-sampled points in each frame. In this paper, we represent dynamic point clouds naturally on graphs and address the denoising problem by inferring the underlying graph via spatio-temporal graph learning, exploiting both the intra-frame similarity and inter-frame consistency. Firstly, assuming the availability of a relevant feature vector per node, we pose spatial-temporal graph learning as optimizing a Mahalanobis distance metric $mathbf{M}$, which is formulated as the minimization of graph Laplacian regularizer. Secondly, to ease the optimization of the symmetric and positive definite metric matrix $mathbf{M}$, we decompose it into $mathbf{M}=mathbf{R}^{top}mathbf{R}$ and solve $mathbf{R}$ instead via proximal gradient. Finally, based on the spatial-temporal graph learning, we formulate dynamic point cloud denoising as the joint optimization of the desired point cloud and underlying spatio-temporal graph, which leverages both intra-frame affinities and inter-frame consistency and is solved via alternating minimization. Experimental results show that the proposed method significantly outperforms independent denoising of each frame from state-of-the-art static point cloud denoising approaches.
We introduce the Region Adaptive Graph Fourier Transform (RA-GFT) for compression of 3D point cloud attributes. The RA-GFT is a multiresolution transform, formed by combining spatially localized block transforms. We assume the points are organized by a family of nested partitions represented by a rooted tree. At each resolution level, attributes are processed in clusters using block transforms. Each block transform produces a single approximation (DC) coefficient, and various detail (AC) coefficients. The DC coefficients are promoted up the tree to the next (lower resolution) level, where the process can be repeated until reaching the root. Since clusters may have a different numbers of points, each block transform must incorporate the relative importance of each coefficient. For this, we introduce the $mathbf{Q}$-normalized graph Laplacian, and propose using its eigenvectors as the block transform. The RA-GFT achieves better complexity-performance trade-offs than previous approaches. In particular, it outperforms the Region Adaptive Haar Transform (RAHT) by up to 2.5 dB, with a small complexity overhead.
Fusing medical images and the corresponding 3D shape representation can provide complementary information and microstructure details to improve the operational performance and accuracy in brain surgery. However, compared to the substantial image data, it is almost impossible to obtain the intraoperative 3D shape information by using physical methods such as sensor scanning, especially in minimally invasive surgery and robot-guided surgery. In this paper, a general generative adversarial network (GAN) architecture based on graph convolutional networks is proposed to reconstruct the 3D point clouds (PCs) of brains by using one single 2D image, thus relieving the limitation of acquiring 3D shape data during surgery. Specifically, a tree-structured generative mechanism is constructed to use the latent vector effectively and transfer features between hidden layers accurately. With the proposed generative model, a spontaneous image-to-PC conversion is finished in real-time. Competitive qualitative and quantitative experimental results have been achieved on our model. In multiple evaluation methods, the proposed model outperforms another common point cloud generative model PointOutNet.
In this paper we propose an approach to perform semantic segmentation of 3D point cloud data by importing the geographic information from a 2D GIS layer (OpenStreetMap). The proposed automatic procedure identifies meaningful units such as buildings and adjusts their locations to achieve best fit between the GIS polygonal perimeters and the point cloud. Our processing pipeline is presented and illustrated by segmenting point cloud data of Trinity College Dublin (Ireland) campus constructed from optical imagery collected by a drone.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا