Do you want to publish a course? Click here

Loss of ultracold RbCs molecules via optical excitation of long-lived two-body collision complexes

131   0   0.0 ( 0 )
 Added by Philip Gregory
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that the lifetime of ultracold ground-state $^{87}$Rb$^{133}$Cs molecules in an optical trap is limited by fast optical excitation of long-lived two-body collision complexes. We partially suppress this loss mechanism by applying square-wave modulation to the trap intensity, such that the molecules spend 75% of each modulation cycle in the dark. By varying the modulation frequency, we show that the lifetime of the collision complex is $0.53pm0.06$ ms in the dark. We find that the rate of optical excitation of the collision complex is $3^{+4}_{-2}times10^{3}$ W$^{-1}$ cm$^2$ s$^{-1}$ for $lambda = 1550$ nm, leading to a lifetime of <100 ns for typical trap intensities. These results explain the two-body loss observed in experiments on nonreactive bialkali molecules.



rate research

Read More

The lifetime of nonreactive ultracold bialkali gases was conjectured to be limited by sticky collisions amplifying three-body loss. We show that the sticking times were previously overestimated and do not support this hypothesis. We find that electronic excitation of NaK+NaK collision complexes by the trapping laser leads to the experimentally observed two-body loss. We calculate the excitation rate with a quasiclassical, statistical model employing ab initio potentials and transition dipole moments. Using longer laser wavelengths or repulsive box potentials may suppress the losses.
We investigate collisional loss in an ultracold mixture of $^{40}$K$^{87}$Rb molecules and $^{87}$Rb atoms, where chemical reactions between the two species are energetically forbidden. Through direct detection of the KRb$_{2}^{*}$ intermediate complexes formed from atom-molecule collisions, we show that a $1064$ nm laser source used for optical trapping of the sample can efficiently deplete the complex population via photo-excitation, an effect which can explain the universal two-body loss observed in the mixture. By monitoring the time-evolution of the KRb$_{2}^{*}$ population after a sudden reduction in the $1064$ nm laser intensity, we measure the lifetime of the complex ($0.39(6)$ ms), as well as the photo-excitation rate for $1064$ nm light ($0.50(3)$ $mu$s$^{-1}($kW/cm$^{2})^{-1}$). The observed lifetime is ${sim}10^{5}$ times longer than recent estimates based on the Rice-Ramsperger-Kassel-Marcus statistical theory, which calls for new insight to explain such a dramatic discrepancy.
Understanding ultracold collisions involving molecules is of fundamental importance for current experiments, where inelastic collisions typically limit the lifetime of molecular ensembles in optical traps. Here we present a broad study of optically trapped ultracold RbCs molecules in collisions with one another, in reactive collisions with Rb atoms, and in nonreactive collisions with Cs atoms. For experiments with RbCs alone, we show that by modulating the intensity of the optical trap, such that the molecules spend 75% of each modulation cycle in the dark, we partially suppress collisional loss of the molecules. This is evidence for optical excitation of molecule pairs mediated via sticky collisions. We find that the suppression is less effective for molecules not prepared in the spin-stretched hyperfine ground state. This may be due either to longer lifetimes for complexes or to laser-free decay pathways. For atom-molecule mixtures, RbCs+Rb and RbCs+Cs, we demonstrate that the rate of collisional loss of molecules scales linearly with the density of atoms. This indicates that, in both cases, the loss of molecules is rate-limited by two-body atom-molecule processes. For both mixtures, we measure loss rates that are below the thermally averaged universal limit.
131 - P. Gersema 2021
We probe photo-induced loss for chemically stable bosonic $^{23}$Na$^{87}$Rb and $^{23}$Na$^{39}$K molecules in chopped optical dipole traps where the molecules spend a significant time in the dark. We expect the effective two-body decay to be largely suppressed in chopped traps due to the small expected complex lifetimes of about $13mu$s and $6mu$s for $^{23}$Na$^{87}$Rb and $^{23}$Na$^{39}$K respectively. However, instead we do observe near-universal loss even at the lowest chopping frequencies we can probe. Our data thus either suggest a so far unknown loss mechanism or a drastic underestimation of the complex lifetime by at least one to two orders of magnitude.
Controlling the pathways and outcomes of reactions is a broadly pursued goal in chemistry. In gas phase reactions, this is typically achieved by manipulating the properties of the reactants, including their translational energy, orientation, and internal quantum state. In contrast, here we influence the pathway of a reaction via its intermediate complex, which is generally too short-lived to be affected by external processes. In particular, the ultracold preparation of potassium-rubidium (KRb) reactants leads to a long-lived intermediate complex (K$_2$Rb$_2^*$), which allows us to steer the reaction away from its nominal ground-state pathway onto a newly identified excited-state pathway using a laser source at 1064 nm, a wavelength commonly used to confine ultracold molecules. Furthermore, by monitoring the change in the complex population after the sudden removal of the excitation light, we directly measure the lifetime of the complex to be $360 pm 30$ ns, in agreement with our calculations based on the Rice-Ramsperger-Kassel-Marcus (RRKM) statistical theory. Our results shed light on the origin of the two-body loss widely observed in ultracold molecule experiments. Additionally, the long complex lifetime, coupled with the observed photo-excitation pathway, opens up the possibility to spectroscopically probe the structure of the complex with high resolution, thus elucidating the reaction dynamics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا