Quantifying coherence in terms of the pure-state coherence


Abstract in English

Quantifying quantum coherence is a key task in the resource theory of coherence. Here we establish a good coherence monotone in terms of a state conversion process, which automatically endows the coherence monotone with an operational meaning. We show that any state can be produced from some input pure states via the corresponding incoherent channels. It is especially found that the coherence of a given state can be well characterized by the least coherence of the input pure states, so a coherence monotone is established by only effectively quantifying the input pure states. In particular, we show that our proposed coherence monotone is the supremum of all the coherence monotones that give the same coherence for any given pure state. Considering the convexity, we prove that our proposed coherence measure is a subset of the coherence measure based on the convex roof construction. As an application, we give a concrete expression of our coherence measure by employing the geometric coherence of a pure state. We also give a thorough analysis on the states of qubit and finally obtain series of analytic coherence measures.

Download