No Arabic abstract
Despite their success, kernel methods suffer from a massive computational cost in practice. In this paper, in lieu of commonly used kernel expansion with respect to $N$ inputs, we develop a novel optimal design maximizing the entropy among kernel features. This procedure results in a kernel expansion with respect to entropic optimal features (EOF), improving the data representation dramatically due to features dissimilarity. Under mild technical assumptions, our generalization bound shows that with only $O(N^{frac{1}{4}})$ features (disregarding logarithmic factors), we can achieve the optimal statistical accuracy (i.e., $O(1/sqrt{N})$). The salient feature of our design is its sparsity that significantly reduces the time and space cost. Our numerical experiments on benchmark datasets verify the superiority of EOF over the state-of-the-art in kernel approximation.
Random Fourier features is one of the most popular techniques for scaling up kernel methods, such as kernel ridge regression. However, despite impressive empirical results, the statistical properties of random Fourier features are still not well understood. In this paper we take steps toward filling this gap. Specifically, we approach random Fourier features from a spectral matrix approximation point of view, give tight bounds on the number of Fourier features required to achieve a spectral approximation, and show how spectral matrix approximation bounds imply statistical guarantees for kernel ridge regression. Qualitatively, our results are twofold: on the one hand, we show that random Fourier feature approximation can provably speed up kernel ridge regression under reasonable assumptions. At the same time, we show that the method is suboptimal, and sampling from a modified distribution in Fourier space, given by the leverage function of the kernel, yields provably better performance. We study this optimal sampling distribution for the Gaussian kernel, achieving a nearly complete characterization for the case of low-dimensional bounded datasets. Based on this characterization, we propose an efficient sampling scheme with guarantees superior to random Fourier features in this regime.
Cloud networks are difficult to monitor because they grow rapidly and the budgets for monitoring them are limited. We propose a framework for estimating network metrics, such as latency and packet loss, with guarantees on estimation errors for a fixed monitoring budget. Our proposed algorithms produce a distribution of probes across network paths, which we then monitor; and are based on A- and E-optimal experimental designs in statistics. Unfortunately, these designs are too computationally costly to use at production scale. We propose their scalable and near-optimal approximations based on the Frank-Wolfe algorithm. We validate our approaches in simulation on real network topologies, and also using a production probing system in a real cloud network. We show major gains in reducing the probing budget compared to both production and academic baselines, while maintaining low estimation errors, even with very low probing budgets.
The Neural Tangent Kernel (NTK) has discovered connections between deep neural networks and kernel methods with insights of optimization and generalization. Motivated by this, recent works report that NTK can achieve better performances compared to training neural networks on small-scale datasets. However, results under large-scale settings are hardly studied due to the computational limitation of kernel methods. In this work, we propose an efficient feature map construction of the NTK of fully-connected ReLU network which enables us to apply it to large-scale datasets. We combine random features of the arc-cosine kernels with a sketching-based algorithm which can run in linear with respect to both the number of data points and input dimension. We show that dimension of the resulting features is much smaller than other baseline feature map constructions to achieve comparable error bounds both in theory and practice. We additionally utilize the leverage score based sampling for improved bounds of arc-cosine random features and prove a spectral approximation guarantee of the proposed feature map to the NTK matrix of two-layer neural network. We benchmark a variety of machine learning tasks to demonstrate the superiority of the proposed scheme. In particular, our algorithm can run tens of magnitude faster than the exact kernel methods for large-scale settings without performance loss.
Consider the classical supervised learning problem: we are given data $(y_i,{boldsymbol x}_i)$, $ile n$, with $y_i$ a response and ${boldsymbol x}_iin {mathcal X}$ a covariates vector, and try to learn a model $f:{mathcal X}to{mathbb R}$ to predict future responses. Random features methods map the covariates vector ${boldsymbol x}_i$ to a point ${boldsymbol phi}({boldsymbol x}_i)$ in a higher dimensional space ${mathbb R}^N$, via a random featurization map ${boldsymbol phi}$. We study the use of random features methods in conjunction with ridge regression in the feature space ${mathbb R}^N$. This can be viewed as a finite-dimensional approximation of kernel ridge regression (KRR), or as a stylized model for neural networks in the so called lazy training regime. We define a class of problems satisfying certain spectral conditions on the underlying kernels, and a hypercontractivity assumption on the associated eigenfunctions. These conditions are verified by classical high-dimensional examples. Under these conditions, we prove a sharp characterization of the error of random features ridge regression. In particular, we address two fundamental questions: $(1)$~What is the generalization error of KRR? $(2)$~How big $N$ should be for the random features approximation to achieve the same error as KRR? In this setting, we prove that KRR is well approximated by a projection onto the top $ell$ eigenfunctions of the kernel, where $ell$ depends on the sample size $n$. We show that the test error of random features ridge regression is dominated by its approximation error and is larger than the error of KRR as long as $Nle n^{1-delta}$ for some $delta>0$. We characterize this gap. For $Nge n^{1+delta}$, random features achieve the same error as the corresponding KRR, and further increasing $N$ does not lead to a significant change in test error.
Analysis of large-scale sequential data has been one of the most crucial tasks in areas such as bioinformatics, text, and audio mining. Existing string kernels, however, either (i) rely on local features of short substructures in the string, which hardly capture long discriminative patterns, (ii) sum over too many substructures, such as all possible subsequences, which leads to diagonal dominance of the kernel matrix, or (iii) rely on non-positive-definite similarity measures derived from the edit distance. Furthermore, while there have been works addressing the computational challenge with respect to the length of string, most of them still experience quadratic complexity in terms of the number of training samples when used in a kernel-based classifier. In this paper, we present a new class of global string kernels that aims to (i) discover global properties hidden in the strings through global alignments, (ii) maintain positive-definiteness of the kernel, without introducing a diagonal dominant kernel matrix, and (iii) have a training cost linear with respect to not only the length of the string but also the number of training string samples. To this end, the proposed kernels are explicitly defined through a series of different random feature maps, each corresponding to a distribution of random strings. We show that kernels defined this way are always positive-definite, and exhibit computational benefits as they always produce emph{Random String Embeddings (RSE)} that can be directly used in any linear classification models. Our extensive experiments on nine benchmark datasets corroborate that RSE achieves better or comparable accuracy in comparison to state-of-the-art baselines, especially with the strings of longer lengths. In addition, we empirically show that RSE scales linearly with the increase of the number and the length of string.