Do you want to publish a course? Click here

Waves, Algebraic Growth and Clumping in Sedimenting Disk Arrays

73   0   0.0 ( 0 )
 Added by Rahul Chajwa
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

An array of spheres descending slowly through a viscous fluid always clumps [J.M. Crowley, J. Fluid Mech. {bf 45}, 151 (1971)]. We show that anisotropic particle shape qualitatively transforms this iconic instability of collective sedimentation. In experiment and theory on disks, aligned facing their neighbours in a horizontal one-dimensional lattice and settling at Reynolds number $sim 10^{-4}$ in a quasi-two-dimensional slab geometry, we find that for large enough lattice spacing the coupling of disk orientation and translation rescues the array from the clumping instability. Despite the absence of inertia the resulting dynamics displays the wavelike excitations of a mass-and-spring array, with a conserved momentum in the form of the collective tilt of the disks and an emergent spring stiffness from the viscous hydrodynamic interaction. However, the non-normal character of the dynamical matrix leads to algebraic growth of perturbations even in the linearly stable regime. Stability analysis demarcates a phase boundary in the plane of wavenumber and lattice spacing, separating the regimes of algebraically growing waves and clumping, in quantitative agreement with our experiments. Anisotropic shape thus suppresses the classic linear instability of sedimenting sphere arrays, introduces a new conserved variable, and opens a window to the physics of transient growth of linearly stable modes.



rate research

Read More

We study the dynamics of knotted deformable closed chains sedimenting in a viscous fluid. We show experimentally that trefoil and other torus knots often attain a remarkably regular horizontal toroidal structure while sedimenting, with a number of intertwined loops, oscillating periodically around each other. We then recover this motion numerically and find out that it is accompanied by a very slow rotation around the vertical symmetry axis. We analyze the dependence of the characteristic time scales on the chain flexibility and aspect ratio. It is observed in the experiments that this oscillating mode of the dynamics can spontaneously form even when starting from a qualitatively different initial configuration. In numerical simulations, the oscillating modes are usually present as transients or final stages of the evolution, depending on chain aspect ratio and flexibility, and the number of loops.
76 - Sayan Das 2020
Surface bound catalytic chemical reactions self-propel chemically active Janus particles. In the vicinity of boundaries, these particles exhibit rich behavior, such as the occurrence of wall-bound steady states of sliding. Most active particles tend to sediment as they are density mismatched with the solution. Moreover Janus spheres, which consist of an inert core material decorated with a cap-like, thin layer of a catalyst, are gyrotactic (bottom-heavy). Occurrence of sliding states near the horizontal walls depends on the interplay between the active motion and the gravity-driven sedimentation and alignment. It is thus important to understand and quantify the influence of these gravity-induced effects on the behavior of model chemically active particles moving near walls. For model gyrotactic, self-phoretic Janus particles, here we study theoretically the occurrence of sliding states at horizontal planar walls that are either below (floor) or above (ceiling) the particle. We construct state diagrams characterizing the occurrence of such states as a function of the sedimentation velocity and of the gyrotactic response of the particle, as well as of the phoretic mobility of the particle. We show that in certain cases sliding states may emerge simultaneously at both the ceiling and the floor, while the larger part of the experimentally relevant parameter space corresponds to particles that would exhibit sliding states only either at the floor or at the ceiling or there are no sliding states at all. These predictions are critically compared with the results of previous experimental studies and our experiments conducted on Pt-coated polystyrene and silica-core particles suspended in aqueous hydrogen peroxide solutions.
The interaction between swimming microorganisms or artificial self-propelled colloids and passive (tracer) particles in a fluid leads to enhanced diffusion of the tracers. This enhancement has attracted strong interest, as it could lead to new strategies to tackle the difficult problem of mixing on a microfluidic scale. Most of the theoretical work on this topic has focused on hydrodynamic interactions between the tracers and swimmers in a bulk fluid. However, in simulations, periodic boundary conditions (PBCs) are often imposed on the sample and the fluid. Here, we theoretically analyze the effect of PBCs on the hydrodynamic interactions between tracer particles and microswimmers. We formulate an Ewald sum for the leading-order stresslet singularity produced by a swimmer to probe the effect of PBCs on tracer trajectories. We find that introducing periodicity into the system has a surprisingly significant effect, even for relatively small swimmer-tracer separations. We also find that the bulk limit is only reached for very large system sizes, which are challenging to simulate with most hydrodynamic solvers.
82 - Kunlin Ma , Nimish Pujara , 2021
Microswimmers (planktonic microorganisms or artificial active particles) immersed in a fluid interact with the ambient flow, altering their trajectories. By modelling anisotropic microswimmers as spheroidal bodies with an intrinsic swimming velocity that supplements advection and reorientation by the flow, we investigate how shape and swimming affect the trajectories of microswimmers in surface gravity waves. The coupling between flow-induced reorientations and swimming introduces a shape dependency to the vertical transport. We show that each trajectory is bounded by critical planes in the position-orientation phase space that depend only on the shape. We also give explicit solutions to these trajectories and determine whether microswimmers that begin within the water column eventually hit the free surface. We find that it is possible for microswimmers to be initially swimming downwards, but to recover and head back to the surface. For microswimmers that are initially randomly oriented, the fraction that hit the free surface is a strong function of shape and starting depth, and a weak function of swimming speed.
When tiny soft ferromagnetic particles are placed along a liquid interface and exposed to a vertical magnetic field, the balance between capillary attraction and magnetic repulsion leads to self-organization into well-defined patterns. Here, we demonstrate experimentally that precessing magnetic fields induce metachronal waves on the periphery of these assemblies, similar to the ones observed in ciliates and some arthropods. The outermost layer of particles behaves like an array of cilia or legs whose sequential movement causes a net and controllable locomotion. This bioinspired many-particle swimming strategy is effective even at low Reynolds number, using only spatially uniform fields to generate the waves.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا