Do you want to publish a course? Click here

Secure Millimeter Wave Cloud Radio Access Networks Relying on Microwave Multicast Fronthaul

174   0   0.0 ( 0 )
 Added by Wanming Hao
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we investigate the downlink secure beamforming (BF) design problem of cloud radio access networks (C-RANs) relying on multicast fronthaul, where millimeter-wave and microwave carriers are used for the access links and fronthaul links, respectively. The base stations (BSs) jointly serve users through cooperating hybrid analog/digital BF. We first develop an analog BF for cooperating BSs. On this basis, we formulate a secrecy rate maximization (SRM) problem subject both to a realistic limited fronthaul capacity and to the total BS transmit power constraint. Due to the intractability of the non-convex problem formulated, advanced convex approximated techniques, constrained concave convex procedures and semi-definite programming (SDP) relaxation are applied to transform it into a convex one. Subsequently, an iterative algorithm of jointly optimizing multicast BF, cooperative digital BF and the artificial noise (AN) covariance is proposed. Next, we construct the solution of the original problem by exploiting both the primal and the dual optimal solution of the SDP-relaxed problem. Furthermore, a per-BS transmit power constraint is considered, necessitating the reformulation of the SRM problem, which can be solved by an efficient iterative algorithm. We then eliminate the idealized simplifying assumption of having perfect channel state information (CSI) for the eavesdropper links and invoke realistic imperfect CSI. Furthermore, a worst-case SRM problem is investigated. Finally, by combining the so-called $mathcal{S}$-Procedure and convex approximated techniques, we design an efficient iterative algorithm to solve it. Simulation results are presented to evaluate the secrecy rate and demonstrate the effectiveness of the proposed algorithms.



rate research

Read More

In cloud radio access networks (C-RANs), the baseband units and radio units of base stations are separated, which requires high-capacity fronthaul links connecting both parts. In this paper, we consider the delay-aware fronthaul allocation problem for C-RANs. The stochastic optimization problem is formulated as an infinite horizon average cost Markov decision process. To deal with the curse of dimensionality, we derive a closed-form approximate priority function and the associated error bound using perturbation analysis. Based on the closed-form approximate priority function, we propose a low-complexity delay-aware fronthaul allocation algorithm solving the per-stage optimization problem. The proposed solution is further shown to be asymptotically optimal for sufficiently small cross link path gains. Finally, the proposed fronthaul allocation algorithm is compared with various baselines through simulations, and it is shown that significant performance gain can be achieved.
Uplink and downlink cloud radio access networks are modeled as two-hop K-user L-relay networks, whereby small base-stations act as relays for end-to-end communications and are connected to a central processor via orthogonal fronthaul links of finite capacities. Simplifi
Wireless networks with directional antennas, like millimeter wave (mmWave) networks, have enhanced security. For a large-scale mmWave ad hoc network in which eavesdroppers are randomly located, however, eavesdroppers can still intercept the confidential messages, since they may reside in the signal beam. This paper explores the potential of physical layer security in mmWave ad hoc networks. Specifically, we characterize the impact of mmWave channel characteristics, random blockages, and antenna gains on the secrecy performance. For the special case of uniform linear array (ULA), a tractable approach is proposed to evaluate the average achievable secrecy rate. We also characterize the impact of artificial noise in such networks. Our results reveal that in the low transmit powerregime, the use of low mmWave frequency achieves better secrecy performance, and when increasing transmit power, a transition from low mmWave frequency to high mmWave frequency is demanded for obtaining a higher secrecy rate. More antennas at the transmitting nodes are needed to decrease the antenna gain obtained by the eavesdroppers when using ULA. Eavesdroppers can intercept more information by using a wide beam pattern. Furthermore, the use of artificial noise may be ineffective for enhancing the secrecy rate.
We introduce clustered millimeter wave networks with invoking non-orthogonal multiple access~(NOMA) techniques, where the NOMA users are modeled as Poisson cluster processes and each cluster contains a base station (BS) located at the center. To provide realistic directional beamforming, an actual antenna array pattern is deployed at all BSs. We propose three distance-dependent user selection strategies to appraise the path loss impact on the performance of our considered networks. With the aid of such strategies, we derive tractable analytical expressions for the coverage probability and system throughput. Specifically, closed-form expressions are deduced under a sparse network assumption to improve the calculation efficiency. It theoretically demonstrates that the large antenna scale benefits the near user, while such influence for the far user is fluctuant due to the randomness of the beamforming. Moreover, the numerical results illustrate that: 1) the proposed system outperforms traditional orthogonal multiple access techniques and the commonly considered NOMA-mmWave scenarios with the random beamforming; 2) the coverage probability has a negative correlation with the variance of intra-cluster receivers; 3) 73 GHz is the best carrier frequency for near user and 28 GHz is the best choice for far user; 4) an optimal number of the antenna elements exists for maximizing the system throughput.
Rate-splitting multiple access (RSMA) has been recognized as a promising physical layer strategy for 6G. Motivated by ever increasing popularity of cache-enabled content delivery in wireless communications, this paper proposes an innovative multigroup multicast transmission scheme based on RSMA for cache-aided cloud-radio access networks (C-RAN). Our proposed scheme not only exploits the properties of content-centric communications and local caching at the base stations (BSs), but also incorporates RSMA to better manage interference in multigroup multicast transmission with statistical channel state information (CSI) known at the central processor (CP) and the BSs. At the RSMA-enabled cloud CP, the message of each multicast group is split into a private and a common part with the former private part being decoded by all users in the respective group and the latter common part being decoded by multiple users from other multicast groups. Common message decoding is done for the purpose of mitigating the interference. In this work, we jointly optimize the clustering of BSs and the precoding with the aim of maximizing the minimum rate among all multicast groups to guarantee fairness serving all groups. The problem is a mixed-integer non-linear stochastic program (MINLSP), which is solved by a practical algorithm we proposed including a heuristic clustering algorithm for assigning a set of BSs to serve each user followed by an efficient iterative algorithm that combines the sample average approximation (SAA) and weighted minimum mean square error (WMMSE) to solve the stochastic non-convex sub-problem of precoder design. Numerical results show the explicit max-min rate gain of our proposed transmission scheme compared to the state-of-the-art trivial interference processing methods. Therefore, we conclude that RSMA is a promising technique for cache-aided C-RAN.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا