Introducing Graph Cumulants: What is the Variance of Your Social Network?


Abstract in English

In an increasingly interconnected world, understanding and summarizing the structure of these networks becomes increasingly relevant. However, this task is nontrivial; proposed summary statistics are as diverse as the networks they describe, and a standardized hierarchy has not yet been established. In contrast, vector-valued random variables admit such a description in terms of their cumulants (e.g., mean, (co)variance, skew, kurtosis). Here, we introduce the natural analogue of cumulants for networks, building a hierarchical description based on correlations between an increasing number of connections, seamlessly incorporating additional information, such as directed edges, node attributes, and edge weights. These graph cumulants provide a principled and unifying framework for quantifying the propensity of a network to display any substructure of interest (such as cliques to measure clustering). Moreover, they give rise to a natural hierarchical family of maximum entropy models for networks (i.e., ERGMs) that do not suffer from the degeneracy problem, a common practical pitfall of other ERGMs.

Download