Do you want to publish a course? Click here

Ruelle zeta function from field theory

299   0   0.0 ( 0 )
 Added by Michele Schiavina
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a field-theoretic interpretation of Ruelle zeta function, and show how it can be seen as the partition function for $BF$ theory when an unusual gauge fixing condition on contact manifolds is imposed. This suggests an alternative rephrasing of a conjecture due to Fried on the equivalence between Ruelle zeta function and analytic torsion, in terms of homotopies of Lagrangian submanifolds.



rate research

Read More

Recently we introduced a new technique for computing the average free energy of a system with quenched randomness. The basic tool of this technique is a distributional zeta-function. The distributional zeta-function is a complex function whose derivative at the origin yields the average free energy of the system as the sum of two contributions: the first one is a series in which all the integer moments of the partition function of the model contribute; the second one, which can not be written as a series of the integer moments, can be made as small as desired. In this paper we present a mathematical rigorous proof that the average free energy of one disordered $lambdavarphi^{4}$ model defined in a zero-dimensional space can be obtained using the distributional zeta-function technique. We obtain an analytic expression for the average free energy of the model.
141 - Donald Yau 2018
Algebraic quantum field theory and prefactorization algebra are two mathematical approaches to quantum field theory. In this monograph, using a new coend definition of the Boardman-Vogt construction of a colored operad, we define homotopy algebraic quantum field theories and homotopy prefactorization algebras and investigate their homotopy coherent structures. Homotopy coherent diagrams, homotopy inverses, A-infinity-algebras, E-infinity-algebras, and E-infinity-modules arise naturally in this context. In particular, each homotopy algebraic quantum field theory has the structure of a homotopy coherent diagram of A-infinity-algebras and satisfies a homotopy coherent version of the causality axiom. When the time-slice axiom is defined for algebraic quantum field theory, a homotopy coherent version of the time-slice axiom is satisfied by each homotopy algebraic quantum field theory. Over each topological space, every homotopy prefactorization algebra has the structure of a homotopy coherent diagram of E-infinity-modules over an E-infinity-algebra. To compare the two approaches, we construct a comparison morphism from the colored operad for (homotopy) prefactorization algebras to the colored operad for (homotopy) algebraic quantum field theories and study the induced adjunctions on algebras.
124 - A. Eremenko , G. Levin , M. Sodin 2017
We study the limit distribution of eigenvalues of a Ruelle operator (which is also called the Thurston pushforward operator) for the dynamical system $z mapsto z^2+c$ when $c<-2$ and tends to $-2$.
We introduce a polynomial zeta function $zeta^{(p)}_{P_n}$, related to certain problems of mathematical physics, and compute its value and the value of its first derivative at the origin $s=0$, by means of a very simple technique. As an application, we compute the determinant of the Dirac operator on quaternionic vector spaces.
In this paper we present a new mathematical rigorous technique for computing the average free energy of a disordered system with quenched randomness, using the replicas. The basic tool of this technique is a distributional zeta-function, a complex function whose derivative at the origin yields the average free energy of the system as the sum of two contributions: the first one is a series in which all the integer moments of the partition function of the model contribute; the second one, which can not be written as a series of the integer moments, can be made as small as desired. This result supports the use of integer moments of the partition function, computed via replicas, for expressing the average free energy of the system. One advantage of the proposed formalism is that it does not require the understanding of the properties of the permutation group when the number of replicas goes to zero. Moreover, the symmetry is broken using the saddle-point equations of the model. As an application for the distributional zeta-function technique, we obtain the average free energy of the disordered $lambdavarphi^{4}$ model defined in a $d$-dimensional Euclidean space.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا