No Arabic abstract
Combinatorial dimensions play an important role in the theory of machine learning. For example, VC dimension characterizes PAC learning, SQ dimension characterizes weak learning with statistical queries, and Littlestone dimension characterizes online learning. In this paper we aim to develop combinatorial dimensions that characterize bounded memory learning. We propose a candidate solution for the case of realizable strong learning under a known distribution, based on the SQ dimension of neighboring distributions. We prove both upper and lower bounds for our candidate solution, that match in some regime of parameters. In this parameter regime there is an equivalence between bounded memory and SQ learning. We conjecture that our characterization holds in a much wider regime of parameters.
The explosive growth of easily-accessible unlabeled data has lead to growing interest in active learning, a paradigm in which data-hungry learning algorithms adaptively select informative examples in order to lower prohibitively expensive labeling costs. Unfortunately, in standard worst-case models of learning, the active setting often provides no improvement over non-adaptive algorithms. To combat this, a series of recent works have considered a model in which the learner may ask enriched queries beyond labels. While such models have seen success in drastically lowering label costs, they tend to come at the expense of requiring large amounts of memory. In this work, we study what families of classifiers can be learned in bounded memory. To this end, we introduce a novel streaming-variant of enriched-query active learning along with a natural combinatorial parameter called lossless sample compression that is sufficient for learning not only with bounded memory, but in a query-optimal and computationally efficient manner as well. Finally, we give three fundamental examples of classifier families with small, easy to compute lossless compression schemes when given access to basic enriched queries: axis-aligned rectangles, decision trees, and halfspaces in two dimensions.
The design of good heuristics or approximation algorithms for NP-hard combinatorial optimization problems often requires significant specialized knowledge and trial-and-error. Can we automate this challenging, tedious process, and learn the algorithms instead? In many real-world applications, it is typically the case that the same optimization problem is solved again and again on a regular basis, maintaining the same problem structure but differing in the data. This provides an opportunity for learning heuristic algorithms that exploit the structure of such recurring problems. In this paper, we propose a unique combination of reinforcement learning and graph embedding to address this challenge. The learned greedy policy behaves like a meta-algorithm that incrementally constructs a solution, and the action is determined by the output of a graph embedding network capturing the current state of the solution. We show that our framework can be applied to a diverse range of optimization problems over graphs, and learns effective algorithms for the Minimum Vertex Cover, Maximum Cut and Traveling Salesman problems.
Graphs have been widely used to represent complex data in many applications. Efficient and effective analysis of graphs is important for graph-based applications. However, most graph analysis tasks are combinatorial optimization (CO) problems, which are NP-hard. Recent studies have focused a lot on the potential of using machine learning (ML) to solve graph-based CO problems. Most recent methods follow the two-stage framework. The first stage is graph representation learning, which embeds the graphs into low-dimension vectors. The second stage uses ML to solve the CO problems using the embeddings of the graphs learned in the first stage. The works for the first stage can be classified into two categories, graph embedding (GE) methods and end-to-end (E2E) learning methods. For GE methods, learning graph embedding has its own objective, which may not rely on the CO problems to be solved. The CO problems are solved by independent downstream tasks. For E2E learning methods, the learning of graph embeddings does not have its own objective and is an intermediate step of the learning procedure of solving the CO problems. The works for the second stage can also be classified into two categories, non-autoregressive methods and autoregressive methods. Non-autoregressive methods predict a solution for a CO problem in one shot. A non-autoregressive method predicts a matrix that denotes the probability of each node/edge being a part of a solution of the CO problem. The solution can be computed from the matrix. Autoregressive methods iteratively extend a partial solution step by step. At each step, an autoregressive method predicts a node/edge conditioned to current partial solution, which is used to its extension. In this survey, we provide a thorough overview of recent studies of the graph learning-based CO methods. The survey ends with several remarks on future research directions.
The explosion in workload complexity and the recent slow-down in Moores law scaling call for new approaches towards efficient computing. Researchers are now beginning to use recent advances in machine learning in software optimizations, augmenting or replacing traditional heuristics and data structures. However, the space of machine learning for computer hardware architecture is only lightly explored. In this paper, we demonstrate the potential of deep learning to address the von Neumann bottleneck of memory performance. We focus on the critical problem of learning memory access patterns, with the goal of constructing accurate and efficient memory prefetchers. We relate contemporary prefetching strategies to n-gram models in natural language processing, and show how recurrent neural networks can serve as a drop-in replacement. On a suite of challenging benchmark datasets, we find that neural networks consistently demonstrate superior performance in terms of precision and recall. This work represents the first step towards practical neural-network based prefetching, and opens a wide range of exciting directions for machine learning in computer architecture research.
The use of blackbox solvers inside neural networks is a relatively new area which aims to improve neural network performance by including proven, efficient solvers for complex problems. Existing work has created methods for learning networks with these solvers as components while treating them as a blackbox. This work attempts to improve upon existing techniques by optimizing not only over the primary loss function, but also over the performance of the solver itself by using Time-cost Regularization. Additionally, we propose a method to learn blackbox parameters such as which blackbox solver to use or the heuristic function for a particular solver. We do this by introducing the idea of a hyper-blackbox which is a blackbox around one or more internal blackboxes.