Do you want to publish a course? Click here

OoDAnalyzer: Interactive Analysis of Out-of-Distribution Samples

61   0   0.0 ( 0 )
 Added by Changjian Chen
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

One major cause of performance degradation in predictive models is that the test samples are not well covered by the training data. Such not well-represented samples are called OoD samples. In this paper, we propose OoDAnalyzer, a visual analysis approach for interactively identifying OoD samples and explaining them in context. Our approach integrates an ensemble OoD detection method and a grid-based visualization. The detection method is improved from deep ensembles by combining more features with algorithms in the same family. To better analyze and understand the OoD samples in context, we have developed a novel kNN-based grid layout algorithm motivated by Halls theorem. The algorithm approximates the optimal layout and has $O(kN^2)$ time complexity, faster than the grid layout algorithm with overall best performance but $O(N^3)$ time complexity. Quantitative evaluation and case studies were performed on several datasets to demonstrate the effectiveness and usefulness of OoDAnalyzer.



rate research

Read More

Reviews are integral to e-commerce services and products. They contain a wealth of information about the opinions and experiences of users, which can help better understand consumer decisions and improve user experience with products and services. Today, data scientists analyze reviews by developing rules and models to extract, aggregate, and understand information embedded in the review text. However, working with thousands of reviews, which are typically noisy incomplete text, can be daunting without proper tools. Here we first contribute results from an interview study that we conducted with fifteen data scientists who work with review text, providing insights into their practices and challenges. Results suggest data scientists need interactive systems for many review analysis tasks. In response we introduce Teddy, an interactive system that enables data scientists to quickly obtain insights from reviews and improve their extraction and modeling pipelines.
53 - Ke Xu , Yun Wang , Leni Yang 2019
Detecting and analyzing potential anomalous performances in cloud computing systems is essential for avoiding losses to customers and ensuring the efficient operation of the systems. To this end, a variety of automated techniques have been developed to identify anomalies in cloud computing performance. These techniques are usually adopted to track the performance metrics of the system (e.g., CPU, memory, and disk I/O), represented by a multivariate time series. However, given the complex characteristics of cloud computing data, the effectiveness of these automated methods is affected. Thus, substantial human judgment on the automated analysis results is required for anomaly interpretation. In this paper, we present a unified visual analytics system named CloudDet to interactively detect, inspect, and diagnose anomalies in cloud computing systems. A novel unsupervised anomaly detection algorithm is developed to identify anomalies based on the specific temporal patterns of the given metrics data (e.g., the periodic pattern), the results of which are visualized in our system to indicate the occurrences of anomalies. Rich visualization and interaction designs are used to help understand the anomalies in the spatial and temporal context. We demonstrate the effectiveness of CloudDet through a quantitative evaluation, two case studies with real-world data, and interviews with domain experts.
We introduce four new real-world distribution shift datasets consisting of changes in image style, image blurriness, geographic location, camera operation, and more. With our new datasets, we take stock of previously proposed methods for improving out-of-distribution robustness and put them to the test. We find that using larger models and artificial data augmentations can improve robustness on real-world distribution shifts, contrary to claims in prior work. We find improvements in artificial robustness benchmarks can transfer to real-world distribution shifts, contrary to claims in prior work. Motivated by our observation that data augmentations can help with real-world distribution shifts, we also introduce a new data augmentation method which advances the state-of-the-art and outperforms models pretrained with 1000 times more labeled data. Overall we find that some methods consistently help with distribution shifts in texture and local image statistics, but these methods do not help with some other distribution shifts like geographic changes. Our results show that future research must study multiple distribution shifts simultaneously, as we demonstrate that no evaluated method consistently improves robustness.
Detecting out-of-distribution (OOD) and adversarial samples is essential when deploying classification models in real-world applications. We introduce Channel Mean Discrepancy (CMD), a model-agnostic distance metric for evaluating the statistics of features extracted by classification models, inspired by integral probability metrics. CMD compares the feature statistics of incoming samples against feature statistics estimated from previously seen training samples with minimal overhead. We experimentally demonstrate that CMD magnitude is significantly smaller for legitimate samples than for OOD and adversarial samples. We propose a simple method to reliably differentiate between legitimate samples from OOD and adversarial samples using CMD, requiring only a single forward pass on a pre-trained classification model per sample. We further demonstrate how to achieve single image detection by using a lightweight model for channel sensitivity tuning, an improvement on other statistical detection methods. Preliminary results show that our simple yet effective method outperforms several state-of-the-art approaches to detecting OOD and adversarial samples across various datasets and attack methods with high efficiency and generalizability.
Communication consists of both meta-information as well as content. Currently, the automated analysis of such data often focuses either on the network aspects via social network analysis or on the content, utilizing methods from text-mining. However, the first category of approaches does not leverage the rich content information, while the latter ignores the conversation environment and the temporal evolution, as evident in the meta-information. In contradiction to communication research, which stresses the importance of a holistic approach, both aspects are rarely applied simultaneously, and consequently, their combination has not yet received enough attention in automated analysis systems. In this work, we aim to address this challenge by discussing the difficulties and design decisions of such a path as well as contribute CommAID, a blueprint for a holistic strategy to communication analysis. It features an integrated visual analytics design to analyze communication networks through dynamics modeling, semantic pattern retrieval, and a user-adaptable and problem-specific machine learning-based retrieval system. An interactive multi-level matrix-based visualization facilitates a focused analysis of both network and content using inline visuals supporting cross-checks and reducing context switches. We evaluate our approach in both a case study and through formative evaluation with eight law enforcement experts using a real-world communication corpus. Results show that our solution surpasses existing techniques in terms of integration level and applicability. With this contribution, we aim to pave the path for a more holistic approach to communication analysis.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا