No Arabic abstract
By considering a cigar-shaped trapping potential elongated in a proper curvilinear coordinate, we discover a new form of wave localization which arises from the interplay of geometry and topological protection. The potential is modulated in its shape such that local curvature introduces a trapping potential. The curvature varies along the trap curvilinear axis encodes a topological Harper modulation. The varying geometry maps our system in a one-dimensional Andre-Aubry-Harper grating. We show that a mobility edge exists and topologically protected states arises. These states are extremely robust with respect to disorder in shape of the string. The results may be relevant for localization phenomena in Bose-Einstein condensates, optical fibers and waveguides, and new laser devices, but also for fundamental studies on string theory. Taking into account that the one-dimensional modulation mimic the existence of a additional dimensions, our system is the first example of physically realizable five-dimensional string.
Time-periodic driving fields could endow a system with peculiar topological and transport features. In this work, we find dynamically controlled localization transitions and mobility edges in non-Hermitian quasicrystals via shaking the lattice periodically. The driving force dresses the hopping amplitudes between lattice sites, yielding alternate transitions between localized, mobility edge and extended non-Hermitian quasicrystalline phases. We apply our Floquet engineering approach to five representative models of non-Hermitian quasicrystals, obtain the conditions of photon-assisted localization transitions and mobility edges, and find the expressions of Lyapunov exponents for some models. We further introduce topological winding numbers of Floquet quasienergies to distinguish non-Hermitian quasicrystalline phases with different localization nature. Our discovery thus extend the study of quasicrystals to non-Hermitian Floquet systems, and provide an efficient way of modulating the topological and transport properties of these unique phases.
We experimentally demonstrate topological edge states arising from the valley-Hall effect in twodimensional honeycomb photonic lattices with broken inversion symmetry. We break inversion symmetry by detuning the refractive indices of the two honeycomb sublattices, giving rise to a boron nitride-like band structure. The edge states therefore exist along the domain walls between regions of opposite valley Chern numbers. We probe both the armchair and zig-zag domain walls and show that the former become gapped for any detuning, whereas the latter remain ungapped until a cutoff is reached. The valley-Hall effect provides a new mechanism for the realization of time-reversal invariant photonic topological insulators.
We construct an example of a 1$d$ quasiperiodically driven spin chain whose edge states can coherently store quantum information, protected by a combination of localization, dynamics, and topology. Unlike analogous behavior in static and periodically driven (Floquet) spin chains, this model does not rely upon microscopic symmetry protection: Instead, the edge states are protected purely by emergent dynamical symmetries. We explore the dynamical signatures of this Emergent Dynamical Symmetry-Protected Topological (EDSPT) order through exact numerics, time evolving block decimation, and analytic high-frequency expansion, finding evidence that the EDSPT is a stable dynamical phase protected by bulk many-body localization up to (at least) stretched-exponentially long time scales, and possibly beyond. We argue that EDSPTs are special to the quasiperiodically driven setting, and cannot arise in Floquet systems. Moreover, we find evidence of a new type of boundary criticality, in which the edge spin dynamics transition from quasiperiodic to chaotic, leading to bulk thermalization.
We study the Floquet edge states in arrays of periodically curved optical waveguides described by the modulated Su-Schrieffer-Heeger model. Beyond the bulk-edge correspondence, our study explores the interplay between band topology and periodic modulations. By analysing the quasi-energy spectra and Zak phase, we reveal that, although topological and non-topological edge states can exist for the same parameters, emph{they can not appear in the same spectral gap}. In the high-frequency limit, we find analytically all boundaries between the different phases and study the coexistence of topological and non-topological edge states. In contrast to unmodulated systems, the edge states appear due to either band topology or modulation-induced defects. This means that periodic modulations may not only tune the parametric regions with nontrivial topology, but may also support novel edge states.
The effects of downfolding a Brillouin zone can open gaps and quench the kinetic energy by flattening bands. Quasiperiodic systems are extreme examples of this process, which leads to new phases and critical eigenstates. We analytically and numerically investigate these effects in a two dimensional topological insulator with a quasiperiodic potential and discover a complex phase diagram. We study the nature of the resulting eigenstate quantum phase transitions; a quasiperiodic potential can make a trivial insulator topological and induce topological insulator-to-metal phase transitions through a unique universality class distinct from random systems. This wealth of critical behavior occurs concomitantly with the quenching of the kinetic energy, resulting in flat topological bands that could serve as a platform to realize the fractional quantum Hall effect without a magnetic field.