Do you want to publish a course? Click here

Diagonal and Hall holographic conductivities dual to a bulk condensate of magnetic monopoles

69   0   0.0 ( 0 )
 Added by Romulo Rougemont
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

By employing the holographic operator mixing technique to deal with coupled perturbations in the gauge/gravity duality, I numerically compute the real and imaginary parts of the diagonal and Hall AC conductivities in a strongly coupled quantum field theory dual to a bulk condensate of magnetic monopoles. The results obtained show that a conclusion previously derived in the literature, namely, the vanishing of holographic DC conductivities in 3-dimensional strongly coupled quantum field theories dual to a 4-dimensional bulk magnetic monopole condensate, also applies to the calculation of diagonal and Hall conductivities in the presence of a topological $theta$-term. Therefore, the condensation of magnetic monopoles in the bulk is suggested as a rather general and robust mechanism to generate dual strongly coupled quantum field theories with zero DC conductivities. The interplay between frequency, $theta$-angle and the characteristic mass scale of the monopole condensate on the results for the conductivities is also investigated.



rate research

Read More

We construct numerically finite density domain-wall solutions which interpolate between two $AdS_4$ fixed points and exhibit an intermediate regime of hyperscaling violation, with or without Lifshitz scaling. Such RG flows can be realized in gravitational models containing a dilatonic scalar and a massive vector field with appropriate choices of the scalar potential and couplings. The infrared $AdS_4$ fixed point describes a new ground state for strongly coupled quantum systems realizing such scalings, thus avoiding the well-known extensive zero temperature entropy associated with $AdS_2 times mathbb{R}^2$. We also examine the zero temperature behavior of the optical conductivity in these backgrounds and identify two scaling regimes before the UV CFT scaling is reached. The scaling of the conductivity is controlled by the emergent IR conformal symmetry at very low frequencies, and by the intermediate scaling regime at higher frequencies.
121 - J. Hutchinson 2014
The Hall and longitudinal conductivities of a recently studied holographic model of a quantum Hall ferromagnet are computed using the Karch-OBannon technique. In addition, the low temperature entropy of the model is determined. The holographic model has a phase transition as the Landau level filling fraction is increased from zero to one. We argue that this phase transition allows the longitudinal conductivity to have features qualitatively similar to those of two dimensional electron gases in the integer quantum Hall regime. The argument also applies to the low temperature limit of the entropy. The Hall conductivity is found to have an interesting structure. Even though it does not exhibit Hall plateaux, it has a flattened dependence on the filling fraction with a jump, analogous to the interpolation between Hall plateaux, at the phase transition.
The gravitational part of the holographic dual to the SYK model has been conjectured to be Jackiw-Teitelboim (JT) gravity. In this paper we construct an AdS2 background in N = (2,2) JT gravity and show that the gravitational dynamics are - as in the N = 0 and N = 1 cases - fully captured by the extrinsic curvature as an effective boundary action. This boundary term is given by the super-Schwarzian of the N = 2 SYK model, thereby providing further evidence of the JT/SYK duality. The chirality of this SYK model is reproduced by the inherent chirality of axial N = (2,2) supergravity.
The holographic Weyl semimetal is a model of a strongly coupled topological semi-metal. A topological quantum phase transition separates a topological phase with non-vanishing anomalous Hall conductivity from a trivial state. We investigate how this phase transition depends on the parameters of the scalar potential (mass and quartic self coupling) finding that the quantum phase transition persists for a large region in parameter space. We then compute the axial Hall conductivity. The algebraic structure of the axial anomaly predicts it to be 1/3 of the electric Hall conductivity. We find that this holds once a non-trivial renormalization effect on the external axial gauge fields is taken into account. Finally we show that the phase transition also occurs in a top-down model based on a consistent truncation of type IIB supergravity.
79 - Ki-Seok Kim , Shinsei Ryu 2020
Applying recursive renormalization group transformations to a scalar field theory, we obtain an effective quantum gravity theory with an emergent extra dimension, described by a dual holographic Einstein-Klein-Gordon type action. Here, the dynamics of both the dual order-parameter field and the metric tensor field originate from density-density and energy-momentum tensor-tensor effective interactions, respectively, in the recursive renormalization group transformation, performed approximately in the Gaussian level. This linear approximation in the recursive renormalization group transformation for the gravity sector gives rise to a linearized quantum Einstein-scalar theory along the $z-$directional emergent space. In the large $N$ limit, where $N$ is the flavor number of the original scalar fields, quantum fluctuations of both dynamical metric and dual scalar fields are suppressed, leading to a classical field theory of the Einstein-scalar type in $(D+1)$-spacetime dimensions. We show that this emergent background gravity describes the renormalization group flows of coupling functions in the UV quantum field theory through the extra dimension. More precisely, the IR boundary conditions of the gravity equations correspond to the renormalization group $beta$-functions of the quantum field theory, where the infinitesimal distance in the extra-dimensional space is identified with an energy scale for the renormalization group transformation. Finally, we also show that this dual holographic formulation describes quantum entanglement in a geometrical way, encoding the transfer of quantum entanglement from quantum matter to classical gravity in the large $N$ limit. We claim that this entanglement transfer serves as a microscopic foundation for the emergent holographic duality description.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا