Relative Anomaly in (1+1)d Rational Conformal Field Theory


Abstract in English

We study t Hooft anomalies of symmetry-enriched rational conformal field theories (RCFT) in (1+1)d. Such anomalies determine whether a theory can be realized in a truly (1+1)d system with on-site symmetry, or on the edge of a (2+1)d symmetry-protected topological phase. RCFTs with the identical symmetry actions on their chiral algebras may have different t Hooft anomalies due to additional symmetry charges on local primary operators. To compute the relative anomaly, we establish a precise correspondence between (1+1)d non-chiral RCFTs and (2+1)d doubled symmetry-enriched topological (SET) phases with a choice of symmetric gapped boundary. Based on these results we derive a general formula for the relative t Hooft anomaly in terms of algebraic data that characterizes the SET phase and its boundary.

Download