No Arabic abstract
Stochastic gradient Markov chain Monte Carlo (MCMC) algorithms have received much attention in Bayesian computing for big data problems, but they are only applicable to a small class of problems for which the parameter space has a fixed dimension and the log-posterior density is differentiable with respect to the parameters. This paper proposes an extended stochastic gradient MCMC lgoriathm which, by introducing appropriate latent variables, can be applied to more general large-scale Bayesian computing problems, such as those involving dimension jumping and missing data. Numerical studies show that the proposed algorithm is highly scalable and much more efficient than traditional MCMC algorithms. The proposed algorithms have much alleviated the pain of Bayesian methods in big data computing.
It is well known that Markov chain Monte Carlo (MCMC) methods scale poorly with dataset size. A popular class of methods for solving this issue is stochastic gradient MCMC. These methods use a noisy estimate of the gradient of the log posterior, which reduces the per iteration computational cost of the algorithm. Despite this, there are a number of results suggesting that stochastic gradient Langevin dynamics (SGLD), probably the most popular of these methods, still has computational cost proportional to the dataset size. We suggest an alternative log posterior gradient estimate for stochastic gradient MCMC, which uses control variates to reduce the variance. We analyse SGLD using this gradient estimate, and show that, under log-concavity assumptions on the target distribution, the computational cost required for a given level of accuracy is independent of the dataset size. Next we show that a different control variate technique, known as zero variance control variates can be applied to SGMCMC algorithms for free. This post-processing step improves the inference of the algorithm by reducing the variance of the MCMC output. Zero variance control variates rely on the gradient of the log posterior; we explore how the variance reduction is affected by replacing this with the noisy gradient estimate calculated by SGMCMC.
Despite having various attractive qualities such as high prediction accuracy and the ability to quantify uncertainty and avoid over-fitting, Bayesian Matrix Factorization has not been widely adopted because of the prohibitive cost of inference. In this paper, we propose a scalable distributed Bayesian matrix factorization algorithm using stochastic gradient MCMC. Our algorithm, based on Distributed Stochastic Gradient Langevin Dynamics, can not only match the prediction accuracy of standard MCMC methods like Gibbs sampling, but at the same time is as fast and simple as stochastic gradient descent. In our experiments, we show that our algorithm can achieve the same level of prediction accuracy as Gibbs sampling an order of magnitude faster. We also show that our method reduces the prediction error as fast as distributed stochastic gradient descent, achieving a 4.1% improvement in RMSE for the Netflix dataset and an 1.8% for the Yahoo music dataset.
Stochastic gradient Markov chain Monte Carlo (SGMCMC) has become a popular method for scalable Bayesian inference. These methods are based on sampling a discrete-time approximation to a continuous time process, such as the Langevin diffusion. When applied to distributions defined on a constrained space the time-discretization error can dominate when we are near the boundary of the space. We demonstrate that because of this, current SGMCMC methods for the simplex struggle with sparse simplex spaces; when many of the components are close to zero. Unfortunately, many popular large-scale Bayesian models, such as network or topic models, require inference on sparse simplex spaces. To avoid the biases caused by this discretization error, we propose the stochastic Cox-Ingersoll-Ross process (SCIR), which removes all discretization error and we prove that samples from the SCIR process are asymptotically unbiased. We discuss how this idea can be extended to target other constrained spaces. Use of the SCIR process within a SGMCMC algorithm is shown to give substantially better performance for a topic model and a Dirichlet process mixture model than existing SGMCMC approaches.
In this paper, we introduce efficient ensemble Markov Chain Monte Carlo (MCMC) sampling methods for Bayesian computations in the univariate stochastic volatility model. We compare the performance of our ensemble MCMC methods with an improved version of a recent sampler of Kastner and Fruwirth-Schnatter (2014). We show that ensemble samplers are more efficient than this state of the art sampler by a factor of about 3.1, on a data set simulated from the stochastic volatility model. This performance gain is achieved without the ensemble MCMC sampler relying on the assumption that the latent process is linear and Gaussian, unlike the sampler of Kastner and Fruwirth-Schnatter.
Many recent Markov chain Monte Carlo (MCMC) samplers leverage continuous dynamics to define a transition kernel that efficiently explores a target distribution. In tandem, a focus has been on devising scalable variants that subsample the data and use stochastic gradients in place of full-data gradients in the dynamic simulations. However, such stochastic gradient MCMC samplers have lagged behind their full-data counterparts in terms of the complexity of dynamics considered since proving convergence in the presence of the stochastic gradient noise is non-trivial. Even with simple dynamics, significant physical intuition is often required to modify the dynamical system to account for the stochastic gradient noise. In this paper, we provide a general recipe for constructing MCMC samplers--including stochastic gradie