Do you want to publish a course? Click here

Cosmic-Ray Driven Outflows to Mpc Scales from $L_{ast}$ Galaxies

88   0   0.0 ( 0 )
 Added by Philip Hopkins
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the effects of cosmic rays (CRs) on outflows from star-forming galaxies in the circum and inter-galactic medium (CGM/IGM), in high-resolution, fully-cosmological FIRE-2 simulations (accounting for mechanical and radiative stellar feedback, magnetic fields, anisotropic conduction/viscosity/CR diffusion and streaming, and CR losses). We showed previously that massive ($M_{rm halo}gtrsim 10^{11},M_{odot}$), low-redshift ($zlesssim 1-2$) halos can have CR pressure dominate over thermal CGM pressure and balance gravity, giving rise to a cooler CGM with an equilibrium density profile. This dramatically alters outflows. Absent CRs, high gas thermal pressure in massive halos traps galactic outflows near the disk, so they recycle. With CRs injected in supernovae as modeled here, the low-pressure halo allows escape and CR pressure gradients continuously accelerate this material well into the IGM in fast outflows, while lower-density gas at large radii is accelerated in-situ into slow outflows that extend to $>$Mpc scales. CGM/IGM outflow morphologies are radically altered: they become mostly volume-filling (with inflow in a thin mid-plane layer) and coherently biconical from the disk to $>$Mpc. The CR-driven outflows are primarily cool ($Tsim10^{5},$K) and low-velocity. All of these effects weaken and eventually vanish at lower halo masses ($lesssim 10^{11},M_{odot}$) or higher redshifts ($zgtrsim 1-2$), reflecting the ratio of CR to thermal+gravitational pressure in the outer halo. We present a simple analytic model which explains all of the above phenomena.



rate research

Read More

Outflows driven by active galactic nuclei (AGN) are an important channel for accreting supermassive black holes (SMBHs) to interact with their host galaxies and clusters. Properties of the outflows are however poorly constrained due to the lack of kinetically resolved data of the hot plasma that permeates the circumgalactic and intracluster space. In this work, we use a single parameter, outflow-to-accretion mass-loading factor $m=dot{M}_{rm out}/dot{M}_{rm BH}$, to characterize the outflows that mediate the interaction between SMBHs and their hosts. By modeling both M87 and Perseus, and comparing the simulated thermal profiles with the X-ray observations of these two systems, we demonstrate that $m$ can be constrained between $200-500$. This parameter corresponds to a bulk flow speed between $4,000-7,000,{rm km,s}^{-1}$ at around 1 kpc, and a thermalized outflow temperature between $10^{8.7}-10^{9},{rm K}$. Our results indicate that the dominant outflow speeds in giant elliptical galaxies and clusters are much lower than in the close vicinity of the SMBH, signaling an efficient coupling with and deceleration by the surrounding medium on length scales below 1 kpc. Consequently, AGNs may be efficient at launching outflows $sim10$ times more massive than previously uncovered by measurements of cold, obscuring material. We also examine the mass and velocity distribution of the cold gas, which ultimately forms a rotationally supported disk in simulated clusters. The rarity of such disks in observations indicates that further investigations are needed to understand the evolution of the cold gas after it forms.
Cosmic rays (CRs) are thought to be an important feedback mechanism in star-forming galaxies. They can provide an important source of pressure support and possibly drive outflows. We perform multidimensional CR-magnetohydrodynamic simulations including transport by streaming and diffusion to investigate wind launching from an initially hydrostatic atmosphere by CRs. We estimate a characteristic Eddington limit on the CR flux for which the CR force exceeds gravity and compare it to simulated systems. Scaling our results to conditions in star-forming galaxies, we find that CRs are likely to contribute to driving outflows for a broad range of star formation environments. We quantify the momentum and energy transfer between CRs and gas, along with the associated mass outflow rates under different assumptions about the relative importance of streaming and diffusion for transport. In simulations with streaming, we observe the growth and saturation of the CR acoustic instability, but the CRs and gas remain well coupled, with CR momentum transferred efficiently to the gas even when this instability is present. Higher CR fluxes transferr more energy to the gas and drive stronger outflows. When streaming is present, most of the transferred energy takes the form of Alfv{e}n wave heating of the gas, raising its pressure and internal energy, with a lower fractional contribution to the kinetic energy of the outflow. We also consider runs with radiative cooling, which modifies gas temperature and pressure profiles but does not seem to have a large impact on the mass outflow for super-Eddington CR fluxes.
We present the new TNG50 cosmological, magnetohydrodynamical simulation -- the third and final volume of the IllustrisTNG project. This simulation occupies a unique combination of large volume and high resolution, with a 50 Mpc box sampled by 2160^3 gas cells (baryon mass of 8x10^4 Msun). The median spatial resolution of star-forming ISM gas is ~100-140 parsecs. This resolution approaches or exceeds that of modern zoom simulations of individual massive galaxies, while the volume contains ~20,000 resolved galaxies with M*>10^7 Msun. Herein we show first results from TNG50, focusing on galactic outflows driven by supernovae as well as supermassive black hole feedback. We find that the outflow mass loading is a non-monotonic function of galaxy stellar mass, turning over and rising rapidly above 10^10.5 Msun due to the action of the central black hole. Outflow velocity increases with stellar mass, and at fixed mass is faster at higher redshift. The TNG model can produce high velocity, multi-phase outflows which include cool, dense components. These outflows reach speeds in excess of 3000 km/s out to 20 kpc with an ejective, BH-driven origin. Critically, we show how the relative simplicity of model inputs (and scalings) at the injection scale produces complex behavior at galactic and halo scales. For example, despite isotropic wind launching, outflows exhibit natural collimation and an emergent bipolarity. Furthermore, galaxies above the star-forming main sequence drive faster outflows, although this correlation inverts at high mass with the onset of quenching, whereby low luminosity, slowly accreting, massive black holes drive the strongest outflows.
The circumgalactic medium (CGM) encodes signatures of the galaxy-formation process, including the interaction of galactic outflows driven by stellar and supermassive black hole (SMBH) feedback with the gaseous halo. Moving beyond spherically symmetric radial profiles, we study the textit{angular} dependence of CGM properties around $z=0$ massive galaxies in the IllustrisTNG simulations. We characterize the angular signal of density, temperature, and metallicity of the CGM as a function of galaxy stellar mass, halo mass, distance, and SMBH mass, via stacking. TNG predicts that the CGM is anisotropic in its thermodynamical properties and chemical content over a large mass range, $M_*sim10^{10-11.5}M_odot$. Along the minor axis directions, gas density is diluted, whereas temperature and metallicity are enhanced. These feedback-induced anisotropies in the CGM have a magnitude of $0.1-0.3$ dex, extend out to the halo virial radius, and peak at Milky Way-like masses, $M_*sim10^{10.8}M_odot$. In TNG, this mass scale corresponds to the onset of efficient SMBH feedback and the production of strong outflows. By comparing the anisotropic signals predicted by TNG versus other simulations -- Illustris and EAGLE -- we find that each simulation produces distinct signatures and mass dependencies, implying that this phenomenon is sensitive to the underlying physical models. Finally, we explore X-ray emission as an observable of this CGM anistropy, finding that future X-ray observations, including the eROSITA all-sky survey, will be able to detect and characterize this signal, particularly in terms of an angular modulation of the X-ray hardness.
In this paper, we build from previous work (Bustard et al. 2018) and present simulations of recent (within the past Gyr), magnetized, cosmic ray driven outflows from the Large Magellanic Cloud (LMC), including our first attempts to explicitly use the derived star formation history of the LMC to seed outflow generation. We run a parameter set of simulations for different LMC gas masses and cosmic ray transport treatments, and we make preliminary comparisons to published outflow flux estimates, neutral and ionized hydrogen observations, and Faraday rotation measure maps. We additionally report on the gas mass that becomes unbound from the LMC disk and swept by ram pressure into the Trailing Magellanic Stream. We find that, even for our largest outburst, the mass contribution to the Stream is still quite small, as much of the outflow-turned-halo gas is shielded on the LMCs far-side due to the LMCs primarily face-on infall through the Milky Way halo over the past Gyr. On the LMCs near-side, past outflows have fought an uphill battle against ram pressure, with near-side halo mass being at least a factor of a few smaller than the far-side. Absorption line studies probing only the LMC foreground, then, may be severely underestimating the total mass of the LMC halo formed by outflows.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا