Do you want to publish a course? Click here

The loss of the intra-cluster medium in globular clusters

65   0   0.0 ( 0 )
 Added by William Chantereau
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Stars in globular clusters (GCs) lose a non negligible amount of mass during their post-main sequence evolution. This material is then expected to build up a substantial intra-cluster medium (ICM) within the GC. However, the observed gas content in GCs is a couple of orders of magnitude below these expectations. Here we follow the evolution of this stellar wind material through hydrodynamical simulations to attempt to reconcile theoretical predictions with observations. We test different mechanisms proposed in the literature to clear out the gas such as ram-pressure stripping by the motion of the GC in the Galactic halo medium and ionisation by UV sources. We use the code ramses to run 3D hydrodynamical simulations to study for the first time the ICM evolution within discretised multi-mass GC models including stellar winds and full radiative transfer. We find that the inclusion of both ram-pressure and ionisation is mandatory to explain why only a very low amount of ionised gas is observed in the core of GCs. The same mechanisms operating in ancient GCs that clear the gas could also be efficient at younger ages, meaning that young GCs would not be able to retain gas and form multiple generations of stars as assumed in many models to explain multiple populations. However, this rapid clearing of gas is consistent with observations of young massive clusters.

rate research

Read More

Using a cosmological dark matter simulation of a galaxy-cluster halo, we follow the temporal evolution of its globular cluster population. To mimic the red and blue globular cluster populations, we select at high redshift $(zsim 1)$ two sets of particles from individual galactic halos constrained by the fact that, at redshift $z=0$, they have density profiles similar to observed ones. At redshift $z=0$, approximately 60% of our selected globular clusters were removed from their original halos building up the intra-cluster globular cluster population, while the remaining 40% are still gravitationally bound to their original galactic halos. Since the blue population is more extended than the red one, the intra-cluster globular cluster population is dominated by blue globular clusters, with a relative fraction that grows from 60% at redshift $z=0$ up to 83% for redshift $zsim 2$. In agreement with observational results for the Virgo galaxy cluster, the blue intra-cluster globular cluster population is more spatially extended than the red one, pointing to a tidally disrupted origin.
Intra-cluster (IC) populations are expected to be a natural result of the hierarchical assembly of clusters, yet their low space densities make them difficult to detect and study. We present the first definitive kinematic detection of an IC population of globular clusters (GCs) in the Virgo cluster, around the central galaxy, M87. This study focuses on the Virgo core for which the combination of NGVS photometry and follow-up spectroscopy allows us to reject foreground star contamination and explore GC kinematics over the full Virgo dynamical range. The GC kinematics changes gradually with galactocentric distance, decreasing in mean velocity and increasing in velocity dispersion, eventually becoming indistinguishable from the kinematics of Virgo dwarf galaxies at $mathrm{R>320, kpc}$. By kinematically tagging M87 halo and intra-cluster GCs we find that 1) the M87 halo has a smaller fraction ($52pm3%$) of blue clusters with respect to the IC counterpart ($77pm10%$), 2) the $(g-r)_{0}$ vs $(i-z)_{0}$ color-color diagrams reveal a galaxy population that is redder than the IC population that may be due to a different composition in chemical abundance and progenitor mass, and 3) the ICGC distribution is shallower and more extended than the M87 GCs, yet still centrally concentrated. The ICGC specific frequency, $S_{N,mathrm{ICL}}=10.2pm4.8$, is consistent with what is observed for the population of quenched, low-mass galaxies within 1~Mpc from the clusters center. The IC population at Virgos center is thus consistent with being an accreted component from low-mass galaxies tidally stripped or disrupted through interactions, with a total mass of $mathrm{M_{ICL,tot}=10.8pm0.1times10^{11}M_{odot}}$.
We present the results obtained from a total of 123 ks X-ray (Chandra) and 8 hrs of 1.4 GHz radio (Giant Metrewave Radio Telescope - GMRT) observations of the cool core cluster ZwCl 2701 (z = 0.214). These observations of ZwCl 2701 showed the presence of an extensive pair of ellipsoidal cavities along the East and West directions within the central region < 20 kpc. Detection of bright rims around the cavities suggested that the radio lobes displaced X-ray emitting hot gas forming shell-like structures. The total cavity power (mechanical power) that directly heated the surrounding gas and cooling luminosity of the cluster were estimated to be ~2.27 x 10^{45} ergs and 3.5 x 10^{44} ergs, respectively. Comparable values of cavity power and cooling luminosity of ZwCL 2701 suggested that the mechanical power of the AGN outburst is large enough to balance the radiative cooling in the system. The star formation rate derived from the H_alpha luminosity was found to be ~0.60 M_sun yr^{-1} which is about three orders of magnitude lower than the cooling rate of ~196 M_sun yr^{-1}. Detection of the floor in entropy profile of ZwCl 2701 suggested the presence of an alternative heating mechanism at the centre of the cluster. Lower value of the ratio (~10^{-2}) between black hole mass accretion rate and Eddington mass accretion rate suggested that launching of jet from the super massive black hole is efficient in ZwCl 2701. However, higher value of ratio (~10^{3}) between black hole mass accretion rate and Bondi accretion rate indicated that the accretion rate required to create cavities is well above the Bondi accretion rate.
69 - Silvano Molendi 2004
The Intra-Cluster Medium (ICM) is a rarefied, hot, highly ionized, metal rich, weakly magnetized plasma. In these proceeding, after having reviewed some basic ICM properties, I discuss recent results obtained with the BeppoSAX, XMM-Newton and Chandra satellites. These results are summarized in the following five points. 1) Currently available hard X-ray data does not allow us to constrain B fields in radio halos, the advent of hard X-ray telescopes in a few years may change the situation substantially. 2) There is mounting evidence that temperature profiles of clusters at large radii decline; however investigation of the outermost regions will have to await a new generation of yet unplanned but technologically feasible experiments. 3) The ICM is polluted with metals, the enrichment has probably occurred early on in the clusters life. The abundance excess observed at the center of CC clusters is due to the giant elliptical always found in these systems. 4) Chandra and XMM-Newton observations of relaxed clusters have falsified the previously accepted cooling flow model, heating mechanisms that may offset the cooling are actively being sought. 5) The superb angular resolution of Chandra is allowing us to trace a previously unknown phenomenon intimately related to the formation of galaxy clusters and of their cores.
The occurrence of planetary nebulae (PNe) in globular clusters (GCs) provides an excellent chance to study low-mass stellar evolution in a special (low-metallicity, high stellar density) environment. We report a systematic spectroscopic survey for the [O{sc iii}] 5007 emission line of PNe in 1469 Virgo GCs and 121 Virgo ultra-compact dwarfs (UCDs), mainly hosted in the giant elliptical galaxies M87, M49, M86, and M84. We detected zero PNe in our UCD sample and discovered one PN ($M_{5007} = -4.1$ mag) associated with an M87 GC. We used the [O{sc iii}] detection limit for each GC to estimate the luminosity-specific frequency of PNe, $alpha$, and measured $alpha$ in the Virgo cluster GCs to be $alpha sim 3.9_{-0.7}^{+5.2}times 10^{-8}mathrm{PN}/L_odot$. $alpha$ in Virgo GCs is among the lowest values reported in any environment, due in part to the large sample size, and is 5--6 times lower than that for the Galactic GCs. We suggest that $alpha$ decreases towards brighter and more massive clusters, sharing a similar trend as the binary fraction, and the discrepancy between the Virgo and Galactic GCs can be explained by the observational bias in extragalactic surveys toward brighter GCs. This low but non-zero efficiency in forming PNe may highlight the important role played by binary interactions in forming PNe in GCs. We argue that a future survey of less massive Virgo GCs will be able to determine whether PN production in Virgo GCs is governed by internal process (mass, density, binary fraction), or is largely regulated by external environment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا