Do you want to publish a course? Click here

Entropy, products, and bounded orbit equivalence

110   0   0.0 ( 0 )
 Added by David Kerr
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We prove that if two topologically free and entropy regular actions of countable sofic groups on compact metrizable spaces are continuously orbit equivalent, and each group either (i) contains a w-normal amenable subgroup which is neither locally finite nor virtually cyclic, or (ii) is a non-locally-finite product of two infinite groups, then the actions have the same sofic topological entropy. This fact is then used to show that if two free uniquely ergodic and entropy regular probability-measure-preserving actions of such groups are boundedly orbit equivalent then the actions have the same sofic measure entropy. Our arguments are based on a relativization of property SC to sofic approximations and yield more general entropy inequalities.



rate research

Read More

136 - Yongle Jiang 2018
By the work of Brodzki-Niblo-Nowak-Wright and Monod, topological amenability of a continuous group action can be characterized using uniformly finite homology groups or bounded cohomology groups associated to this action. We show that (certain variations of) these groups are invariants for topologically free actions under continuous orbit equivalence.
82 - Yongle Jiang 2021
We prove that for any two continuous minimal (topologically free) actions of the infinite dihedral group on an infinite compact Hausdorff space, they are continuously orbit equivalent only if they are conjugate. We also show the above fails if we replace the infinite dihedral group with certain other virtually cyclic groups, e.g. the direct product of the integer group with any non-abelian finite simple group.
We show that within any strong orbit equivalent class, there exist minimal subshifts with arbitrarily low superlinear complexity. This is done by proving that for any simple dimension group with unit $(G,G^+,u)$ and any sequence of positive numbers $(p_n)_{ninmathbb{N}}$ such that $lim n/p_n=0$, there exist a minimal subshift whose dimension group is order isomorphic to $(G,G^+,u)$ and whose complexity function grows slower than $p_n$. As a consequence, we get that any Choquet simplex can be realized as the set of invariant measures of a minimal Toeplitz subshift whose complexity grows slower than $p_n$.
An element $f$ of a group $G$ is reversible if it is conjugated in $G$ to its own inverse; when the conjugating map is an involution, $f$ is called strongly reversible. We describe reversible maps in certain groups of interval exchange transformations namely $G_n simeq (mathbb S^1)^n rtimesmathcal S_n $, where $mathbb S^1$ is the circle and $mathcal S_n $ is the group of permutations of ${1,...,n}$. We first characterize strongly reversible maps, then we show that reversible elements are strongly reversible. As a corollary, we obtain that composites of involutions in $G_n$ are product of at most four involutions. We prove that any reversible Interval Exchange Transformation (IET) is reversible by a finite order element and then it is the product of two periodic IETs. In the course of proving this statement, we classify the free actions of $BS(1,-1)$ by IET and we extend this classification to free actions of finitely generated torsion free groups containing a copy of $mathbb Z^2$. We also give examples of faithful free actions of $BS(1,-1)$ and other groups containing reversible IETs. We show that periodic IETs are product of at most $2$ involutions. For IETs that are products of involutions, we show that such 3-IETs are periodic and then are product of at most $2$ involutions and we exhibit a family of non periodic 4-IETs for which we prove that this number is at least $3$ and at most $6$.
We study the auto-correlation measures of invariant random point processes in the hyperbolic plane which arise from various classes of aperiodic Delone sets. More generally, we study auto-correlation measures for large classes of Delone sets in (and even translation bounded measures on) arbitrary locally compact homogeneous metric spaces. We then specialize to the case of weighted model sets, in which we are able to derive more concrete formulas for the auto-correlation. In the case of Riemannian symmetric spaces we also explain how the auto-correlation of a weighted model set in a Riemannian symmetric space can be identified with a (typically non-tempered) positive-definite distribution on $mathbb R^n$. This paves the way for a diffraction theory for such model sets, which will be discussed in the sequel to the present article.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا